stim.Circuit
stim.Circuit.__add__
stim.Circuit.__eq__
stim.Circuit.__getitem__
stim.Circuit.__iadd__
stim.Circuit.__imul__
stim.Circuit.__init__
stim.Circuit.__len__
stim.Circuit.__mul__
stim.Circuit.__ne__
stim.Circuit.__repr__
stim.Circuit.__rmul__
stim.Circuit.__str__
stim.Circuit.append_from_stim_program_text
stim.Circuit.append_operation
stim.Circuit.approx_equals
stim.Circuit.clear
stim.Circuit.compile_detector_sampler
stim.Circuit.compile_m2d_converter
stim.Circuit.compile_sampler
stim.Circuit.copy
stim.Circuit.detector_error_model
stim.Circuit.flattened_operations
stim.Circuit.generated
stim.Circuit.num_detectors
stim.Circuit.num_measurements
stim.Circuit.num_observables
stim.Circuit.num_qubits
stim.Circuit.num_sweep_bits
stim.CircuitInstruction
stim.CircuitRepeatBlock
stim.CompiledDetectorSampler
stim.CompiledMeasurementSampler
stim.CompiledMeasurementsToDetectionEventsConverter
stim.DemInstruction
stim.DemRepeatBlock
stim.DemTarget
stim.DemTarget.__eq__
stim.DemTarget.__ne__
stim.DemTarget.__repr__
stim.DemTarget.__str__
stim.DemTarget.is_logical_observable_id
stim.DemTarget.is_relative_detector_id
stim.DemTarget.is_separator
stim.DemTarget.logical_observable_id
stim.DemTarget.relative_detector_id
stim.DemTarget.separator
stim.DemTarget.val
stim.DetectorErrorModel
stim.DetectorErrorModel.__add__
stim.DetectorErrorModel.__eq__
stim.DetectorErrorModel.__getitem__
stim.DetectorErrorModel.__iadd__
stim.DetectorErrorModel.__imul__
stim.DetectorErrorModel.__init__
stim.DetectorErrorModel.__len__
stim.DetectorErrorModel.__mul__
stim.DetectorErrorModel.__ne__
stim.DetectorErrorModel.__repr__
stim.DetectorErrorModel.__rmul__
stim.DetectorErrorModel.__str__
stim.DetectorErrorModel.append
stim.DetectorErrorModel.approx_equals
stim.DetectorErrorModel.clear
stim.DetectorErrorModel.copy
stim.DetectorErrorModel.num_detectors
stim.DetectorErrorModel.num_errors
stim.DetectorErrorModel.num_observables
stim.DetectorErrorModel.shortest_graphlike_error
stim.GateTarget
stim.GateTarget.__eq__
stim.GateTarget.__init__
stim.GateTarget.__ne__
stim.GateTarget.__repr__
stim.GateTarget.is_combiner
stim.GateTarget.is_inverted_result_target
stim.GateTarget.is_measurement_record_target
stim.GateTarget.is_qubit_target
stim.GateTarget.is_sweep_bit_target
stim.GateTarget.is_x_target
stim.GateTarget.is_y_target
stim.GateTarget.is_z_target
stim.GateTarget.value
stim.PauliString
stim.PauliString.__add__
stim.PauliString.__eq__
stim.PauliString.__getitem__
stim.PauliString.__iadd__
stim.PauliString.__imul__
stim.PauliString.__init__
stim.PauliString.__itruediv__
stim.PauliString.__len__
stim.PauliString.__mul__
stim.PauliString.__ne__
stim.PauliString.__neg__
stim.PauliString.__pos__
stim.PauliString.__repr__
stim.PauliString.__rmul__
stim.PauliString.__setitem__
stim.PauliString.__str__
stim.PauliString.__truediv__
stim.PauliString.commutes
stim.PauliString.copy
stim.PauliString.extended_product
stim.PauliString.random
stim.PauliString.sign
stim.Tableau
stim.Tableau.__add__
stim.Tableau.__call__
stim.Tableau.__eq__
stim.Tableau.__iadd__
stim.Tableau.__init__
stim.Tableau.__len__
stim.Tableau.__mul__
stim.Tableau.__ne__
stim.Tableau.__pow__
stim.Tableau.__repr__
stim.Tableau.__str__
stim.Tableau.append
stim.Tableau.copy
stim.Tableau.from_conjugated_generators
stim.Tableau.from_named_gate
stim.Tableau.inverse
stim.Tableau.inverse_x_output
stim.Tableau.inverse_x_output_pauli
stim.Tableau.inverse_y_output
stim.Tableau.inverse_y_output_pauli
stim.Tableau.inverse_z_output
stim.Tableau.inverse_z_output_pauli
stim.Tableau.prepend
stim.Tableau.random
stim.Tableau.then
stim.Tableau.x_output
stim.Tableau.x_output_pauli
stim.Tableau.y_output
stim.Tableau.y_output_pauli
stim.Tableau.z_output
stim.Tableau.z_output_pauli
stim.TableauSimulator
stim.TableauSimulator.canonical_stabilizers
stim.TableauSimulator.cnot
stim.TableauSimulator.copy
stim.TableauSimulator.current_inverse_tableau
stim.TableauSimulator.current_measurement_record
stim.TableauSimulator.cy
stim.TableauSimulator.cz
stim.TableauSimulator.do
stim.TableauSimulator.h
stim.TableauSimulator.h_xy
stim.TableauSimulator.h_yz
stim.TableauSimulator.iswap
stim.TableauSimulator.iswap_dag
stim.TableauSimulator.measure
stim.TableauSimulator.measure_kickback
stim.TableauSimulator.measure_many
stim.TableauSimulator.peek_bloch
stim.TableauSimulator.peek_observable_expectation
stim.TableauSimulator.reset
stim.TableauSimulator.s
stim.TableauSimulator.s_dag
stim.TableauSimulator.set_inverse_tableau
stim.TableauSimulator.set_num_qubits
stim.TableauSimulator.sqrt_x
stim.TableauSimulator.sqrt_x_dag
stim.TableauSimulator.sqrt_y
stim.TableauSimulator.sqrt_y_dag
stim.TableauSimulator.state_vector
stim.TableauSimulator.swap
stim.TableauSimulator.x
stim.TableauSimulator.xcx
stim.TableauSimulator.xcy
stim.TableauSimulator.xcz
stim.TableauSimulator.y
stim.TableauSimulator.ycx
stim.TableauSimulator.ycy
stim.TableauSimulator.ycz
stim.TableauSimulator.z
stim.target_combiner
stim.target_inv
stim.target_logical_observable_id
stim.target_rec
stim.target_relative_detector_id
stim.target_separator
stim.target_sweep_bit
stim.target_x
stim.target_y
stim.target_z
A mutable stabilizer circuit. Examples: >>> import stim >>> c = stim.Circuit() >>> c.append_operation("X", [0]) >>> c.append_operation("M", [0]) >>> c.compile_sampler().sample(shots=1) array([[1]], dtype=uint8) >>> stim.Circuit(''' ... H 0 ... CNOT 0 1 ... M 0 1 ... DETECTOR rec[-1] rec[-2] ... ''').compile_detector_sampler().sample(shots=1) array([[0]], dtype=uint8)
An instruction, like `H 0 1` or `CNOT rec[-1] 5`, from a circuit. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... H 0 ... M 0 !1 ... X_ERROR(0.125) 5 3 ... ''') >>> circuit[0] stim.CircuitInstruction('H', [stim.GateTarget(0)], []) >>> circuit[1] stim.CircuitInstruction('M', [stim.GateTarget(0), stim.GateTarget(stim.target_inv(1))], []) >>> circuit[2] stim.CircuitInstruction('X_ERROR', [stim.GateTarget(5), stim.GateTarget(3)], [0.125])
A REPEAT block from a circuit. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... H 0 ... REPEAT 5 { ... CX 0 1 ... CZ 1 2 ... } ... ''') >>> repeat_block = circuit[1] >>> repeat_block.repeat_count 5 >>> repeat_block.body_copy() stim.Circuit(''' CX 0 1 CZ 1 2 ''')
An analyzed stabilizer circuit whose detection events can be sampled quickly.
An analyzed stabilizer circuit whose measurements can be sampled quickly.
A tool for quickly converting measurements from an analyzed stabilizer circuit into detection events.
An instruction from a detector error model. Examples: >>> import stim >>> model = stim.DetectorErrorModel(''' ... error(0.125) D0 ... error(0.125) D0 D1 L0 ... error(0.125) D1 D2 ... error(0.125) D2 D3 ... error(0.125) D3 ... ''') >>> instruction = model[0] >>> instruction stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(0)])
A repeat block from a detector error model. Examples: >>> import stim >>> model = stim.DetectorErrorModel(''' ... repeat 100 { ... error(0.125) D0 D1 ... shift_detectors 1 ... } ... ''') >>> model[0] stim.DemRepeatBlock(100, stim.DetectorErrorModel(''' error(0.125) D0 D1 shift_detectors 1 '''))
An instruction target from a detector error model (.dem) file.
A list of instructions describing error mechanisms in terms of the detection events they produce. Examples: >>> import stim >>> model = stim.DetectorErrorModel(''' ... error(0.125) D0 ... error(0.125) D0 D1 L0 ... error(0.125) D1 D2 ... error(0.125) D2 D3 ... error(0.125) D3 ... ''') >>> len(model) 5 >>> stim.Circuit(''' ... X_ERROR(0.125) 0 ... X_ERROR(0.25) 1 ... CORRELATED_ERROR(0.375) X0 X1 ... M 0 1 ... DETECTOR rec[-2] ... DETECTOR rec[-1] ... ''').detector_error_model() stim.DetectorErrorModel(''' error(0.125) D0 error(0.375) D0 D1 error(0.25) D1 ''')
Represents a gate target, like `0` or `rec[-1]`, from a circuit. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... M 0 !1 ... ''') >>> circuit[0].targets_copy()[0] stim.GateTarget(0) >>> circuit[0].targets_copy()[1] stim.GateTarget(stim.target_inv(1))
A signed Pauli tensor product (e.g. "+X \u2297 X \u2297 X" or "-Y \u2297 Z". Represents a collection of Pauli operations (I, X, Y, Z) applied pairwise to a collection of qubits. Examples: >>> import stim >>> stim.PauliString("XX") * stim.PauliString("YY") stim.PauliString("-ZZ") >>> print(stim.PauliString(5)) +_____
A stabilizer tableau. Represents a Clifford operation by explicitly storing how that operation conjugates a list of Pauli group generators into composite Pauli products. Examples: >>> import stim >>> stim.Tableau.from_named_gate("H") stim.Tableau.from_conjugated_generators( xs=[ stim.PauliString("+Z"), ], zs=[ stim.PauliString("+X"), ], ) >>> t = stim.Tableau.random(5) >>> t_inv = t**-1 >>> print(t * t_inv) +-xz-xz-xz-xz-xz- | ++ ++ ++ ++ ++ | XZ __ __ __ __ | __ XZ __ __ __ | __ __ XZ __ __ | __ __ __ XZ __ | __ __ __ __ XZ >>> x2z3 = t.x_output(2) * t.z_output(3) >>> t_inv(x2z3) stim.PauliString("+__XZ_")
A quantum stabilizer circuit simulator whose internal state is an inverse stabilizer tableau. Supports interactive usage, where gates and measurements are applied on demand. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.h(0) >>> if s.measure(0): ... s.h(1) ... s.cnot(1, 2) >>> s.measure(1) == s.measure(2) True >>> s = stim.TableauSimulator() >>> s.h(0) >>> s.cnot(0, 1) >>> s.current_inverse_tableau() stim.Tableau.from_conjugated_generators( xs=[ stim.PauliString("+ZX"), stim.PauliString("+_X"), ], zs=[ stim.PauliString("+X_"), stim.PauliString("+XZ"), ], )
Returns a target combiner (`*` in circuit files) that can be used as an operation target.
Returns a target flagged as inverted that can be passed into Circuit.append_operation For example, the '!1' in 'M 0 !1 2' is qubit 1 flagged as inverted, meaning the measurement result from qubit 1 should be inverted when reported.
Returns a logical observable id identifying a frame change (e.g. "L5" in a .dem file). Args: index: The index of the observable. Returns: The logical observable target. Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.target_logical_observable_id(13) ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) L13 ''')
Returns a record target that can be passed into Circuit.append_operation. For example, the 'rec[-2]' in 'DETECTOR rec[-2]' is a record target.
Returns a relative detector id (e.g. "D5" in a .dem file). Args: index: The index of the detector, relative to the current detector offset. Returns: The relative detector target. Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.target_relative_detector_id(13) ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) D13 ''')
Returns a target separator (e.g. "^" in a .dem file). Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.target_relative_detector_id(1), ... stim.target_separator(), ... stim.target_relative_detector_id(2), ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) D1 ^ D2 ''')
Returns a sweep bit target that can be passed into Circuit.append_operation For example, the 'sweep[5]' in 'CNOT sweep[5] 7' is from `stim.target_sweep_bit(5)`.
Returns a target flagged as Pauli X that can be passed into Circuit.append_operation For example, the 'X1' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 1 flagged as Pauli X.
Returns a target flagged as Pauli Y that can be passed into Circuit.append_operation For example, the 'Y2' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 2 flagged as Pauli Y.
Returns a target flagged as Pauli Z that can be passed into Circuit.append_operation For example, the 'Z3' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 3 flagged as Pauli Z.
Creates a circuit by appending two circuits. Examples: >>> import stim >>> c1 = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> c2 = stim.Circuit(''' ... M 0 1 2 ... ''') >>> c1 + c2 stim.Circuit(''' X 0 Y 1 2 M 0 1 2 ''')
Determines if two circuits have identical contents.
Returns copies of instructions from the circuit. Args: index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range of instructions to return as a circuit. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... X 0 ... X_ERROR(0.5) 1 2 ... REPEAT 100 { ... X 0 ... Y 1 2 ... } ... TICK ... M 0 ... DETECTOR rec[-1] ... ''') >>> circuit[1] stim.CircuitInstruction('X_ERROR', [stim.GateTarget(1), stim.GateTarget(2)], [0.5]) >>> circuit[2] stim.CircuitRepeatBlock(100, stim.Circuit(''' X 0 Y 1 2 ''')) >>> circuit[1::2] stim.Circuit(''' X_ERROR(0.5) 1 2 TICK DETECTOR rec[-1] ''')
Appends a circuit into the receiving circuit (mutating it). Examples: >>> import stim >>> c1 = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> c2 = stim.Circuit(''' ... M 0 1 2 ... ''') >>> c1 += c2 >>> print(repr(c1)) stim.Circuit(''' X 0 Y 1 2 M 0 1 2 ''')
Mutates the circuit by putting its contents into a REPEAT block. Special case: if the repetition count is 0, the circuit is cleared. Special case: if the repetition count is 1, nothing happens. Args: repetitions: The number of times the REPEAT block should repeat. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> c *= 3 >>> print(repr(c)) stim.Circuit(''' REPEAT 3 { X 0 Y 1 2 } ''')
Creates a stim.Circuit. Args: stim_program_text: Defaults to empty. Describes operations to append into the circuit. Examples: >>> import stim >>> empty = stim.Circuit() >>> not_empty = stim.Circuit(''' ... X 0 ... CNOT 0 1 ... M 1 ... ''')
Returns the number of top-level instructions and blocks in the circuit. Instructions inside of blocks are not included in this count. Examples: >>> import stim >>> len(stim.Circuit()) 0 >>> len(stim.Circuit(''' ... X 0 ... X_ERROR(0.5) 1 2 ... TICK ... M 0 ... DETECTOR rec[-1] ... ''')) 5 >>> len(stim.Circuit(''' ... REPEAT 100 { ... X 0 ... Y 1 2 ... } ... ''')) 1
Returns a circuit with a REPEAT block containing the current circuit's instructions. Special case: if the repetition count is 0, an empty circuit is returned. Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned. Args: repetitions: The number of times the REPEAT block should repeat. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> c * 3 stim.Circuit(''' REPEAT 3 { X 0 Y 1 2 } ''')
Determines if two circuits have non-identical contents.
Returns text that is a valid python expression evaluating to an equivalent `stim.Circuit`.
Returns a circuit with a REPEAT block containing the current circuit's instructions. Special case: if the repetition count is 0, an empty circuit is returned. Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned. Args: repetitions: The number of times the REPEAT block should repeat. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> 3 * c stim.Circuit(''' REPEAT 3 { X 0 Y 1 2 } ''')
Returns stim instructions (that can be saved to a file and parsed by stim) for the current circuit.
Appends operations described by a STIM format program into the circuit. Examples: >>> import stim >>> c = stim.Circuit() >>> c.append_from_stim_program_text(''' ... H 0 # comment ... CNOT 0 2 ... ... M 2 ... CNOT rec[-1] 1 ... ''') >>> print(c) H 0 CX 0 2 M 2 CX rec[-1] 1 Args: text: The STIM program text containing the circuit operations to append.
stim.Circuit.append_operation(self, name: object, targets: List[object] = (), arg: object = None) -> None
Appends an operation into the circuit. Examples: >>> import stim >>> c = stim.Circuit() >>> c.append_operation("X", [0]) >>> c.append_operation("H", [0, 1]) >>> c.append_operation("M", [0, stim.target_inv(1)]) >>> c.append_operation("CNOT", [stim.target_rec(-1), 0]) >>> c.append_operation("X_ERROR", [0], 0.125) >>> c.append_operation("CORRELATED_ERROR", [stim.target_x(0), stim.target_y(2)], 0.25) >>> print(repr(c)) stim.Circuit(''' X 0 H 0 1 M 0 !1 CX rec[-1] 0 X_ERROR(0.125) 0 E(0.25) X0 Y2 ''') Args: name: The name of the operation's gate (e.g. "H" or "M" or "CNOT"). This argument can also be set to a `stim.CircuitInstruction` or `stim.CircuitInstructionBlock`, which results in the instruction or block being appended to the circuit. The other arguments (targets and arg) can't be specified when doing so. (The argument name `name` is no longer quite right, but being kept for backwards compatibility.) targets: The gate targets. Gates implicitly broadcast over their targets. arg: A double or list of doubles parameterizing the gate. Different gates take different arguments. For example, X_ERROR takes a probability, OBSERVABLE_INCLUDE takes an observable index, and PAULI_CHANNEL_1 takes three disjoint probabilities. For backwards compatibility reasons, defaults to (0,) for gates that take exactly one argument. Otherwise defaults to no arguments.
Checks if a circuit is approximately equal to another circuit. Two circuits are approximately equal if they are equal up to slight perturbations of instruction arguments such as probabilities. For example `X_ERROR(0.100) 0` is approximately equal to `X_ERROR(0.099)` within an absolute tolerance of 0.002. All other details of the circuits (such as the ordering of instructions and targets) must be exactly the same. Args: other: The circuit, or other object, to compare to this one. atol: The absolute error tolerance. The maximum amount each probability may have been perturbed by. Returns: True if the given object is a circuit approximately equal up to the receiving circuit up to the given tolerance, otherwise False. Examples: >>> import stim >>> base = stim.Circuit(''' ... X_ERROR(0.099) 0 1 2 ... M 0 1 2 ... ''') >>> base.approx_equals(base, atol=0) True >>> base.approx_equals(stim.Circuit(''' ... X_ERROR(0.101) 0 1 2 ... M 0 1 2 ... '''), atol=0) False >>> base.approx_equals(stim.Circuit(''' ... X_ERROR(0.101) 0 1 2 ... M 0 1 2 ... '''), atol=0.0001) False >>> base.approx_equals(stim.Circuit(''' ... X_ERROR(0.101) 0 1 2 ... M 0 1 2 ... '''), atol=0.01) True >>> base.approx_equals(stim.Circuit(''' ... DEPOLARIZE1(0.099) 0 1 2 ... MRX 0 1 2 ... '''), atol=9999) False
Clears the contents of the circuit. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 ... Y 1 2 ... ''') >>> c.clear() >>> c stim.Circuit()
Returns a CompiledDetectorSampler, which can quickly batch sample detection events, for the circuit. Args: seed: PARTIALLY determines simulation results by deterministically seeding the random number generator. Must be None or an integer in range(2**64). Defaults to None. When set to None, a prng seeded by system entropy is used. When set to an integer, making the exact same series calls on the exact same machine with the exact same version of Stim will produce the exact same simulation results. CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is present to make it possible to have future optimizations to the random sampling, and is enforced by introducing intentional differences in the seeding strategy from version to version. CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of supported SIMD instructions. For example, using the same seed on a machine that supports AVX instructions and one that only supports SSE instructions may produce different simulation results. CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one call. Examples: >>> import stim >>> c = stim.Circuit(''' ... H 0 ... CNOT 0 1 ... M 0 1 ... DETECTOR rec[-1] rec[-2] ... ''') >>> s = c.compile_detector_sampler() >>> s.sample(shots=1) array([[0]], dtype=uint8)
stim.Circuit.compile_m2d_converter(self, *, skip_reference_sample: bool = False) -> stim.CompiledMeasurementsToDetectionEventsConverter
Returns an object that can efficiently convert measurements into detection events for the given circuit. The converter uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator during initialization of the converter, as a baseline for determining what the expected value of a detector is. Note that the expected behavior of gauge detectors (detectors that are not actually deterministic under noiseless execution) can vary depending on the reference sample. Stim mitigates this by always generating the same reference sample for a given circuit. Args: skip_reference_sample: Defaults to False. When set to True, the reference sample used by the converter is initialized to all-zeroes instead of being collected from the circuit. This should only be used if it's known that the all-zeroes sample is actually a possible result from the circuit (under noiseless execution). Returns: An initialized stim.CompiledMeasurementsToDetectionEventsConverter. Examples: >>> import stim >>> import numpy as np >>> converter = stim.Circuit(''' ... X 0 ... M 0 ... DETECTOR rec[-1] ... ''').compile_m2d_converter() >>> converter.convert( ... measurements=np.array([[0], [1]], dtype=np.bool8), ... append_observables=False, ... ) array([[ True], [False]])
stim.Circuit.compile_sampler(self, *, skip_reference_sample: bool = False, seed: object = None) -> stim.CompiledMeasurementSampler
Returns a CompiledMeasurementSampler, which can quickly batch sample measurements, for the circuit. Args: skip_reference_sample: Defaults to False. When set to True, the reference sample used by the sampler is initialized to all-zeroes instead of being collected from the circuit. This means that the results returned by the sampler are actually whether or not each measurement was *flipped*, instead of true measurement results. Forcing an all-zero reference sample is useful when you are only interested in error propagation and don't want to have to deal with the fact that some measurements want to be On when no errors occur. It is also useful when you know for sure that the all-zero result is actually a possible result from the circuit (under noiseless execution), meaning it is a valid reference sample as good as any other. Computing the reference sample is the most time consuming and memory intensive part of simulating the circuit, so promising that the simulator can safely skip that step is an effective optimization. seed: PARTIALLY determines simulation results by deterministically seeding the random number generator. Must be None or an integer in range(2**64). Defaults to None. When set to None, a prng seeded by system entropy is used. When set to an integer, making the exact same series calls on the exact same machine with the exact same version of Stim will produce the exact same simulation results. CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is present to make it possible to have future optimizations to the random sampling, and is enforced by introducing intentional differences in the seeding strategy from version to version. CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of supported SIMD instructions. For example, using the same seed on a machine that supports AVX instructions and one that only supports SSE instructions may produce different simulation results. CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one call. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 2 ... M 0 1 2 ... ''') >>> s = c.compile_sampler() >>> s.sample(shots=1) array([[0, 0, 1]], dtype=uint8)
Returns a copy of the circuit. An independent circuit with the same contents. Examples: >>> import stim >>> c1 = stim.Circuit("H 0") >>> c2 = c1.copy() >>> c2 is c1 False >>> c2 == c1 True
stim.Circuit.detector_error_model(self, *, decompose_errors: bool = False, flatten_loops: bool = False, allow_gauge_detectors: bool = False, approximate_disjoint_errors: float = False) -> stim.DetectorErrorModel
Returns a stim.DetectorErrorModel describing the error processes in the circuit. Args: decompose_errors: Defaults to false. When set to true, the error analysis attempts to decompose the components of composite error mechanisms (such as depolarization errors) into simpler errors, and suggest this decomposition via `stim.target_separator()` between the components. For example, in an XZ surface code, single qubit depolarization has a Y error term which can be decomposed into simpler X and Z error terms. Decomposition fails (causing this method to throw) if it's not possible to decompose large errors into simple errors that affect at most two detectors. flatten_loops: Defaults to false. When set to true, the output will not contain any `repeat` blocks. When set to false, the error analysis watches for loops in the circuit reaching a periodic steady state with respect to the detectors being introduced, the error mechanisms that affect them, and the locations of the logical observables. When it identifies such a steady state, it outputs a repeat block. This is massively more efficient than flattening for circuits that contain loops, but creates a more complex output. allow_gauge_detectors: Defaults to false. When set to false, the error analysis verifies that detectors in the circuit are actually deterministic under noiseless execution of the circuit. When set to true, these detectors are instead considered to be part of degrees freedom that can be removed from the error model. For example, if detectors D1 and D3 both anti-commute with a reset, then the error model has a gauge `error(0.5) D1 D3`. When gauges are identified, one of the involved detectors is removed from the system using Gaussian elimination. Note that logical observables are still verified to be deterministic, even if this option is set. approximate_disjoint_errors: Defaults to false. When set to false, composite error mechanisms with disjoint components (such as `PAULI_CHANNEL_1(0.1, 0.2, 0.0)`) can cause the error analysis to throw exceptions (because detector error models can only contain independent error mechanisms). When set to true, the probabilities of the disjoint cases are instead assumed to be independent probabilities. For example, a ``PAULI_CHANNEL_1(0.1, 0.2, 0.0)` becomes equivalent to an `X_ERROR(0.1)` followed by a `Z_ERROR(0.2)`. This assumption is an approximation, but it is a good approximation for small probabilities. This argument can also be set to a probability between 0 and 1, setting a threshold below which the approximation is acceptable. Any error mechanisms that have a component probability above the threshold will cause an exception to be thrown. Examples: >>> import stim >>> stim.Circuit(''' ... X_ERROR(0.125) 0 ... X_ERROR(0.25) 1 ... CORRELATED_ERROR(0.375) X0 X1 ... M 0 1 ... DETECTOR rec[-2] ... DETECTOR rec[-1] ... ''').detector_error_model() stim.DetectorErrorModel(''' error(0.125) D0 error(0.375) D0 D1 error(0.25) D1 ''')
Flattens the circuit's operations into a list. The operations within repeat blocks are actually repeated in the output. Returns: A List[Tuple[name, targets, arg]] of the operations in the circuit. name: A string with the gate's name. targets: A list of things acted on by the gate. Each thing can be: int: The index of a qubit. Tuple["inv", int]: The index of a qubit to measure with an inverted result. Tuple["rec", int]: A measurement record target like `rec[-1]`. Tuple["X", int]: A Pauli X operation to apply during a correlated error. Tuple["Y", int]: A Pauli Y operation to apply during a correlated error. Tuple["Z", int]: A Pauli Z operation to apply during a correlated error. arg: The gate's numeric argument. For most gates this is just 0. For noisy gates this is the probability of the noise being applied. Examples: >>> import stim >>> stim.Circuit(''' ... H 0 ... X_ERROR(0.125) 1 ... M 0 !1 ... ''').flattened_operations() [('H', [0], 0), ('X_ERROR', [1], 0.125), ('M', [0, ('inv', 1)], 0)] >>> stim.Circuit(''' ... REPEAT 2 { ... H 6 ... } ... ''').flattened_operations() [('H', [6], 0), ('H', [6], 0)]
stim.Circuit.generated(code_task: str, *, distance: int, rounds: int, after_clifford_depolarization: float = 0.0, before_round_data_depolarization: float = 0.0, before_measure_flip_probability: float = 0.0, after_reset_flip_probability: float = 0.0) -> stim.Circuit
Generates common circuits. The generated circuits can include configurable noise. The generated circuits include DETECTOR and OBSERVABLE_INCLUDE annotations so that their detection events and logical observables can be sampled. The generated circuits include TICK annotations to mark the progression of time. (E.g. so that converting them using `stimcirq.stim_circuit_to_cirq_circuit` will produce a `cirq.Circuit` with the intended moment structure.) Args: code_task: A string identifying the type of circuit to generate. Available types are: - `repetition_code:memory` - `surface_code:rotated_memory_x` - `surface_code:rotated_memory_z` - `surface_code:unrotated_memory_x` - `surface_code:unrotated_memory_z` - `color_code:memory_xyz` distance: The desired code distance of the generated circuit. The code distance is the minimum number of physical errors needed to cause a logical error. This parameter indirectly determines how many qubits the generated circuit uses. rounds: How many times the measurement qubits in the generated circuit will be measured. Indirectly determines the duration of the generated circuit. after_clifford_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to add after every single-qubit Clifford operation and `DEPOLARIZE2(p)` operations to add after every two-qubit Clifford operation. The after-Clifford depolarizing operations are only included if this probability is not 0. before_round_data_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to apply to every data qubit at the start of a round of stabilizer measurements. The start-of-round depolarizing operations are only included if this probability is not 0. before_measure_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied to qubits before each measurement (X basis measurements use `Z_ERROR(p)` instead). The before-measurement flips are only included if this probability is not 0. after_reset_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied to qubits after each reset (X basis resets use `Z_ERROR(p)` instead). The after-reset flips are only included if this probability is not 0. Returns: The generated circuit. Examples: >>> import stim >>> circuit = stim.Circuit.generated( ... "repetition_code:memory", ... distance=4, ... rounds=10000, ... after_clifford_depolarization=0.0125) >>> print(circuit) R 0 1 2 3 4 5 6 TICK CX 0 1 2 3 4 5 DEPOLARIZE2(0.0125) 0 1 2 3 4 5 TICK CX 2 1 4 3 6 5 DEPOLARIZE2(0.0125) 2 1 4 3 6 5 TICK MR 1 3 5 DETECTOR(1, 0) rec[-3] DETECTOR(3, 0) rec[-2] DETECTOR(5, 0) rec[-1] REPEAT 9999 { TICK CX 0 1 2 3 4 5 DEPOLARIZE2(0.0125) 0 1 2 3 4 5 TICK CX 2 1 4 3 6 5 DEPOLARIZE2(0.0125) 2 1 4 3 6 5 TICK MR 1 3 5 SHIFT_COORDS(0, 1) DETECTOR(1, 0) rec[-3] rec[-6] DETECTOR(3, 0) rec[-2] rec[-5] DETECTOR(5, 0) rec[-1] rec[-4] } M 0 2 4 6 DETECTOR(1, 1) rec[-3] rec[-4] rec[-7] DETECTOR(3, 1) rec[-2] rec[-3] rec[-6] DETECTOR(5, 1) rec[-1] rec[-2] rec[-5] OBSERVABLE_INCLUDE(0) rec[-1]
Counts the number of bits produced when sampling the circuit's detectors. Examples: >>> import stim >>> c = stim.Circuit(''' ... M 0 ... DETECTOR rec[-1] ... REPEAT 100 { ... M 0 1 2 ... DETECTOR rec[-1] ... DETECTOR rec[-2] ... } ... ''') >>> c.num_detectors 201
Counts the number of bits produced when sampling the circuit's measurements. Examples: >>> import stim >>> c = stim.Circuit(''' ... M 0 ... REPEAT 100 { ... M 0 1 ... } ... ''') >>> c.num_measurements 201
Counts the number of bits produced when sampling the circuit's logical observables. This is one more than the largest observable index given to OBSERVABLE_INCLUDE. Examples: >>> import stim >>> c = stim.Circuit(''' ... M 0 ... OBSERVABLE_INCLUDE(2) rec[-1] ... OBSERVABLE_INCLUDE(5) rec[-1] ... ''') >>> c.num_observables 6
Counts the number of qubits used when simulating the circuit. This is always one more than the largest qubit index used by the circuit. Examples: >>> import stim >>> stim.Circuit(''' ... X 0 ... M 0 1 ... ''').num_qubits 2 >>> stim.Circuit(''' ... X 0 ... M 0 1 ... H 100 ... ''').num_qubits 101
Returns the number of sweep bits needed to completely configure the circuit. This is always one more than the largest sweep bit index used by the circuit. Examples: >>> import stim >>> stim.Circuit(''' ... CX sweep[2] 0 ... ''').num_sweep_bits 3 >>> stim.Circuit(''' ... CZ sweep[5] 0 ... CX sweep[2] 0 ... ''').num_sweep_bits 6
Determines if two `stim.CircuitInstruction`s are identical.
stim.CircuitInstruction.__init__(self, name: str, targets: List[object], gate_args: List[float] = ()) -> None
Initializes a `stim.CircuitInstruction`. Args: name: The name of the instruction being applied. targets: The targets the instruction is being applied to. These can be raw values like `0` and `stim.target_rec(-1)`, or instances of `stim.GateTarget`. gate_args: The sequence of numeric arguments parameterizing a gate. For noise gates this is their probabilities. For OBSERVABLE_INCLUDE it's the logical observable's index.
Determines if two `stim.CircuitInstruction`s are different.
Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitInstruction`.
Returns a text description of the instruction as a stim circuit file line.
Returns the gate's arguments (numbers parameterizing the instruction). For noisy gates this typically a list of probabilities. For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index.
The name of the instruction (e.g. `H` or `X_ERROR` or `DETECTOR`).
Returns a copy of the targets of the instruction.
Determines if two `stim.CircuitRepeatBlock`s are identical.
Initializes a `stim.CircuitRepeatBlock`. Args: repeat_count: The number of times to repeat the block. body: The body of the block, as a circuit.
Determines if two `stim.CircuitRepeatBlock`s are different.
Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitRepeatBlock`.
Returns a copy of the body of the repeat block. The copy is forced to ensure it's clear that editing the result will not change the circuit that the repeat block came from. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... H 0 ... REPEAT 5 { ... CX 0 1 ... CZ 1 2 ... } ... ''') >>> repeat_block = circuit[1] >>> repeat_block.body_copy() stim.Circuit(''' CX 0 1 CZ 1 2 ''')
The repetition count of the repeat block. Examples: >>> import stim >>> circuit = stim.Circuit(''' ... H 0 ... REPEAT 5 { ... CX 0 1 ... CZ 1 2 ... } ... ''') >>> repeat_block = circuit[1] >>> repeat_block.repeat_count 5
Creates a detector sampler, which can sample the detectors (and optionally observables) in a circuit. Args: circuit: The circuit to sample from. seed: PARTIALLY determines simulation results by deterministically seeding the random number generator. Must be None or an integer in range(2**64). Defaults to None. When set to None, a prng seeded by system entropy is used. When set to an integer, making the exact same series calls on the exact same machine with the exact same version of Stim will produce the exact same simulation results. CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is present to make it possible to have future optimizations to the random sampling, and is enforced by introducing intentional differences in the seeding strategy from version to version. CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of supported SIMD instructions. For example, using the same seed on a machine that supports AVX instructions and one that only supports SSE instructions may produce different simulation results. CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one call. Returns: An initialized stim.CompiledDetectorSampler. Examples: >>> import stim >>> c = stim.Circuit(''' ... H 0 ... CNOT 0 1 ... X_ERROR(1.0) 0 ... M 0 1 ... DETECTOR rec[-1] rec[-2] ... ''') >>> s = c.compile_detector_sampler() >>> s.sample(shots=1) array([[1]], dtype=uint8)
Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledDetectorSampler`.
stim.CompiledDetectorSampler.sample(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]
Returns a numpy array containing a batch of detector samples from the circuit. The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE instructions can also be included in the results as honorary detectors. Args: shots: The number of times to sample every detector in the circuit. prepend_observables: Defaults to false. When set, observables are included with the detectors and are placed at the start of the results. append_observables: Defaults to false. When set, observables are included with the detectors and are placed at the end of the results. Returns: A numpy array with `dtype=uint8` and `shape=(shots, n)` where `n = num_detectors + num_observables*(append_observables + prepend_observables)`. The bit for detection event `m` in shot `s` is at `result[s, m]`.
stim.CompiledDetectorSampler.sample_bit_packed(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]
Returns a numpy array containing bit packed batch of detector samples from the circuit. The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE instructions can also be included in the results as honorary detectors. Args: shots: The number of times to sample every detector in the circuit. prepend_observables: Defaults to false. When set, observables are included with the detectors and are placed at the start of the results. append_observables: Defaults to false. When set, observables are included with the detectors and are placed at the end of the results. Returns: A numpy array with `dtype=uint8` and `shape=(shots, n)` where `n = num_detectors + num_observables*(append_observables + prepend_observables)`. The bit for detection event `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.
stim.CompiledDetectorSampler.sample_write(self, shots: int, *, filepath: str, format: str = '01', prepend_observables: bool = False, append_observables: bool = False) -> None
Samples detection events from the circuit and writes them to a file. Examples: >>> import stim >>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... path = f"{d}/tmp.dat" ... c = stim.Circuit(''' ... X_ERROR(1) 0 ... M 0 1 ... DETECTOR rec[-2] ... DETECTOR rec[-1] ... ''') ... c.compile_detector_sampler().sample_write(3, filepath=path, format="dets") ... with open(path) as f: ... print(f.read(), end='') shot D0 shot D0 shot D0 Args: shots: The number of times to sample every measurement in the circuit. filepath: The file to write the results to. format: The output format to write the results with. Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64". Defaults to "01". prepend_observables: Sample observables as part of each shot, and put them at the start of the detector data. append_observables: Sample observables as part of each shot, and put them at the end of the detector data. Returns: None.
stim.CompiledMeasurementSampler.__init__(self, circuit: stim.Circuit, *, skip_reference_sample: bool = False, seed: object = None) -> None
Creates a measurement sampler for the given circuit. The sampler uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator during initialization of the sampler, as a baseline for deriving more samples using an error propagation simulator. Args: circuit: The stim circuit to sample from. skip_reference_sample: Defaults to False. When set to True, the reference sample used by the sampler is initialized to all-zeroes instead of being collected from the circuit. This means that the results returned by the sampler are actually whether or not each measurement was *flipped*, instead of true measurement results. Forcing an all-zero reference sample is useful when you are only interested in error propagation and don't want to have to deal with the fact that some measurements want to be On when no errors occur. It is also useful when you know for sure that the all-zero result is actually a possible result from the circuit (under noiseless execution), meaning it is a valid reference sample as good as any other. Computing the reference sample is the most time consuming and memory intensive part of simulating the circuit, so promising that the simulator can safely skip that step is an effective optimization. seed: PARTIALLY determines simulation results by deterministically seeding the random number generator. Must be None or an integer in range(2**64). Defaults to None. When set to None, a prng seeded by system entropy is used. When set to an integer, making the exact same series calls on the exact same machine with the exact same version of Stim will produce the exact same simulation results. CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is present to make it possible to have future optimizations to the random sampling, and is enforced by introducing intentional differences in the seeding strategy from version to version. CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of supported SIMD instructions. For example, using the same seed on a machine that supports AVX instructions and one that only supports SSE instructions may produce different simulation results. CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one call. Returns: An initialized stim.CompiledMeasurementSampler. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 2 3 ... M 0 1 2 3 ... ''') >>> s = c.compile_sampler() >>> s.sample(shots=1) array([[1, 0, 1, 1]], dtype=uint8)
Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledMeasurementSampler`.
Returns a numpy array containing a batch of measurement samples from the circuit. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 2 3 ... M 0 1 2 3 ... ''') >>> s = c.compile_sampler() >>> s.sample(shots=1) array([[1, 0, 1, 1]], dtype=uint8) Args: shots: The number of times to sample every measurement in the circuit. Returns: A numpy array with `dtype=uint8` and `shape=(shots, num_measurements)`. The bit for measurement `m` in shot `s` is at `result[s, m]`.
Returns a numpy array containing a bit packed batch of measurement samples from the circuit. Examples: >>> import stim >>> c = stim.Circuit(''' ... X 0 1 2 3 4 5 6 7 10 ... M 0 1 2 3 4 5 6 7 8 9 10 ... ''') >>> s = c.compile_sampler() >>> s.sample_bit_packed(shots=1) array([[255, 4]], dtype=uint8) Args: shots: The number of times to sample every measurement in the circuit. Returns: A numpy array with `dtype=uint8` and `shape=(shots, (num_measurements + 7) // 8)`. The bit for measurement `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.
stim.CompiledMeasurementSampler.sample_write(self, shots: int, *, filepath: str, format: str = '01') -> None
Samples measurements from the circuit and writes them to a file. Examples: >>> import stim >>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... path = f"{d}/tmp.dat" ... c = stim.Circuit(''' ... X 0 2 3 ... M 0 1 2 3 ... ''') ... c.compile_sampler().sample_write(5, filepath=path, format="01") ... with open(path) as f: ... print(f.read(), end='') 1011 1011 1011 1011 1011 Args: shots: The number of times to sample every measurement in the circuit. filepath: The file to write the results to. format: The output format to write the results with. Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64". Defaults to "01". Returns: None.
stim.CompiledMeasurementsToDetectionEventsConverter.__init__(self, circuit: stim.Circuit, *, skip_reference_sample: bool = False) -> None
Creates a measurement-to-detection-events converter for the given circuit. The converter uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator during initialization of the converter, as a baseline for determining what the expected value of a detector is. Note that the expected behavior of gauge detectors (detectors that are not actually deterministic under noiseless execution) can vary depending on the reference sample. Stim mitigates this by always generating the same reference sample for a given circuit. Args: circuit: The stim circuit to use for conversions. skip_reference_sample: Defaults to False. When set to True, the reference sample used by the converter is initialized to all-zeroes instead of being collected from the circuit. This should only be used if it's known that the all-zeroes sample is actually a possible result from the circuit (under noiseless execution). Returns: An initialized stim.CompiledMeasurementsToDetectionEventsConverter. Examples: >>> import stim >>> import numpy as np >>> converter = stim.Circuit(''' ... X 0 ... M 0 ... DETECTOR rec[-1] ... ''').compile_m2d_converter() >>> converter.convert( ... measurements=np.array([[0], [1]], dtype=np.bool8), ... append_observables=False, ... ) array([[ True], [False]])
Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledMeasurementsToDetectionEventsConverter`.
stim.CompiledMeasurementsToDetectionEventsConverter.convert(self, *, measurements: numpy.ndarray[bool], sweep_bits: numpy.ndarray[bool] = None, append_observables: bool) -> numpy.ndarray[bool]
Reads measurement data from a file, converts it, and writes the detection events to another file. Args: measurements: A numpy array containing measurement data: dtype=bool8 shape=(num_shots, circuit.num_measurements) sweep_bits: A numpy array containing sweep data for `sweep[k]` controls in the circuit: dtype=bool8 shape=(num_shots, circuit.num_sweep_bits) Defaults to None (all sweep bits False). append_observables: When True, the observables in the circuit are included as part of the detection event data. Specifically, they are treated as if they were additional detectors at the end of the circuit. When False, observable data is not output. Returns: The detection event data in a numpy array: dtype=bool8 shape=(num_shots, circuit.num_detectors + circuit.num_observables * append_observables) Examples: >>> import stim >>> import numpy as np >>> converter = stim.Circuit(''' ... X 0 ... M 0 ... DETECTOR rec[-1] ... ''').compile_m2d_converter() >>> converter.convert( ... measurements=np.array([[0], [1]], dtype=np.bool8), ... append_observables=False, ... ) array([[ True], [False]])
stim.CompiledMeasurementsToDetectionEventsConverter.convert_file(self, *, measurements_filepath: str, measurements_format: str = '01', sweep_bits_filepath: str = None, sweep_bits_format: str = '01', detection_events_filepath: str, detection_events_format: str = '01', append_observables: bool) -> None
Reads measurement data from a file, converts it, and writes the detection events to another file. Args: measurements_filepath: A file containing measurement data to be converted. measurements_format: The format the measurement data is stored in. Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64". Defaults to "01". detection_events_filepath: Where to save detection event data to. detection_events_format: The format to save the detection event data in. Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64". Defaults to "01". sweep_bits_filepath: Defaults to None. A file containing sweep data, or None. When specified, sweep data (used for `sweep[k]` controls in the circuit, which can vary from shot to shot) will be read from the given file. When not specified, all sweep bits default to False and no sweep-controlled operations occur. sweep_bits_format: The format the sweep data is stored in. Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64". Defaults to "01". append_observables: When True, the observables in the circuit are included as part of the detection event data. Specifically, they are treated as if they were additional detectors at the end of the circuit. When False, observable data is not output. Examples: >>> import stim >>> import tempfile >>> converter = stim.Circuit(''' ... X 0 ... M 0 ... DETECTOR rec[-1] ... ''').compile_m2d_converter() >>> with tempfile.TemporaryDirectory() as d: ... with open(f"{d}/measurements.01", "w") as f: ... print("0", file=f) ... print("1", file=f) ... converter.convert_file( ... measurements_filepath=f"{d}/measurements.01", ... detection_events_filepath=f"{d}/detections.01", ... append_observables=False, ... ) ... with open(f"{d}/detections.01", "r") as f: ... print(f.read(), end="") 1 0
Determines if two instructions have identical contents.
Creates a stim.DemInstruction. Args: type: The name of the instruction type (e.g. "error" or "shift_detectors"). args: Numeric values parameterizing the instruction (e.g. the 0.1 in "error(0.1)"). targets: The objects the instruction involves (e.g. the "D0" and "L1" in "error(0.1) D0 L1"). Examples: >>> import stim >>> instruction = stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(5)]) >>> print(instruction) error(0.125) D5
Determines if two instructions have non-identical contents.
Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`.
Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.
Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error).
Returns a copy of the list of objects the instruction applies to (e.g. affected detectors.
The name of the instruction type (e.g. "error" or "shift_detectors").
Determines if two repeat blocks are identical.
Creates a stim.DemRepeatBlock. Args: repeat_count: The number of times the repeat block's body is supposed to execute. body: The body of the repeat block as a DetectorErrorModel containing the instructions to repeat. Examples: >>> import stim >>> repeat_block = stim.DemRepeatBlock(100, stim.DetectorErrorModel(''' ... error(0.125) D0 D1 ... shift_detectors 1 ... '''))
Determines if two repeat blocks are different.
Returns text that is a valid python expression evaluating to an equivalent `stim.DemRepeatBlock`.
Returns a copy of the block's body, as a stim.DetectorErrorModel.
The number of times the repeat block's body is supposed to execute.
Determines if two `stim.DemTarget`s are identical.
Determines if two `stim.DemTarget`s are different.
Returns text that is a valid python expression evaluating to an equivalent `stim.DemTarget`.
Returns a text description of the detector error model target.
Determines if the detector error model target is a logical observable id target (like "L5" in a .dem file).
Determines if the detector error model target is a relative detector id target (like "D4" in a .dem file).
Determines if the detector error model target is a separator (like "^" in a .dem file).
Returns a logical observable id identifying a frame change (e.g. "L5" in a .dem file). Args: index: The index of the observable. Returns: The logical observable target. Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.DemTarget.logical_observable_id(13) ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) L13 ''')
Returns a relative detector id (e.g. "D5" in a .dem file). Args: index: The index of the detector, relative to the current detector offset. Returns: The relative detector target. Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.DemTarget.relative_detector_id(13) ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) D13 ''')
Returns a target separator (e.g. "^" in a .dem file). Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.25, [ ... stim.DemTarget.relative_detector_id(1), ... stim.DemTarget.separator(), ... stim.DemTarget.relative_detector_id(2), ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.25) D1 ^ D2 ''')
Returns the target's integer value. Example: >>> import stim >>> stim.target_relative_detector_id(5).val 5 >>> stim.target_logical_observable_id(6).val 6
Creates a detector error model by appending two models. Examples: >>> import stim >>> m1 = stim.DetectorErrorModel(''' ... error(0.125) D0 ... ''') >>> m2 = stim.DetectorErrorModel(''' ... error(0.25) D1 ... ''') >>> m1 + m2 stim.DetectorErrorModel(''' error(0.125) D0 error(0.25) D1 ''')
Determines if two detector error models have identical contents.
Returns copies of instructions from the detector error model. Args: index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range of instructions to return as a detector error model. Examples: Examples: >>> import stim >>> model = stim.DetectorErrorModel(''' ... error(0.125) D0 ... error(0.125) D1 L1 ... repeat 100 { ... error(0.125) D1 D2 ... shift_detectors 1 ... } ... error(0.125) D2 ... logical_observable L0 ... detector D5 ... ''') >>> model[1] stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(1), stim.target_logical_observable_id(1)]) >>> model[2] stim.DemRepeatBlock(100, stim.DetectorErrorModel(''' error(0.125) D1 D2 shift_detectors 1 ''')) >>> model[1::2] stim.DetectorErrorModel(''' error(0.125) D1 L1 error(0.125) D2 detector D5 ''')
Appends a detector error model into the receiving model (mutating it). Examples: >>> import stim >>> m1 = stim.DetectorErrorModel(''' ... error(0.125) D0 ... ''') >>> m2 = stim.DetectorErrorModel(''' ... error(0.25) D1 ... ''') >>> m1 += m2 >>> print(repr(m1)) stim.DetectorErrorModel(''' error(0.125) D0 error(0.25) D1 ''')
Mutates the detector error model by putting its contents into a repeat block. Special case: if the repetition count is 0, the model is cleared. Special case: if the repetition count is 1, nothing happens. Args: repetitions: The number of times the repeat block should repeat. Examples: >>> import stim >>> m = stim.DetectorErrorModel(''' ... error(0.25) D0 ... shift_detectors 1 ... ''') >>> m *= 3 >>> print(m) repeat 3 { error(0.25) D0 shift_detectors 1 }
Creates a stim.DetectorErrorModel. Args: detector_error_model_text: Defaults to empty. Describes instructions to append into the circuit in the detector error model (.dem) format. Examples: >>> import stim >>> empty = stim.DetectorErrorModel() >>> not_empty = stim.DetectorErrorModel(''' ... error(0.125) D0 L0 ... ''')
Returns the number of top-level instructions and blocks in the detector error model. Instructions inside of blocks are not included in this count. Examples: >>> import stim >>> len(stim.DetectorErrorModel()) 0 >>> len(stim.DetectorErrorModel(''' ... error(0.1) D0 D1 ... shift_detectors 100 ... logical_observable L5 ... ''')) 3 >>> len(stim.DetectorErrorModel(''' ... repeat 100 { ... error(0.1) D0 D1 ... error(0.1) D1 D2 ... } ... ''')) 1
Returns a detector error model with a repeat block containing the current model's instructions. Special case: if the repetition count is 0, an empty model is returned. Special case: if the repetition count is 1, an equal model with no repeat block is returned. Args: repetitions: The number of times the repeat block should repeat. Examples: >>> import stim >>> m = stim.DetectorErrorModel(''' ... error(0.25) D0 ... shift_detectors 1 ... ''') >>> m * 3 stim.DetectorErrorModel(''' repeat 3 { error(0.25) D0 shift_detectors 1 } ''')
Determines if two detector error models have non-identical contents.
"Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`."
Returns a detector error model with a repeat block containing the current model's instructions. Special case: if the repetition count is 0, an empty model is returned. Special case: if the repetition count is 1, an equal model with no repeat block is returned. Args: repetitions: The number of times the repeat block should repeat. Examples: >>> import stim >>> m = stim.DetectorErrorModel(''' ... error(0.25) D0 ... shift_detectors 1 ... ''') >>> 3 * m stim.DetectorErrorModel(''' repeat 3 { error(0.25) D0 shift_detectors 1 } ''')
"Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.");
stim.DetectorErrorModel.append(self, instruction: object, parens_arguments: object = None, targets: List[object] = ()) -> None
Appends an instruction to the detector error model. Args: instruction: Either the name of an instruction, a stim.DemInstruction, or a stim.DemRepeatBlock. The `parens_arguments` and `targets` arguments are given if and only if the instruction is a name. parens_arguments: Numeric values parameterizing the instruction. The numbers inside parentheses in a detector error model file (eg. the `0.25` in `error(0.25) D0`). This argument can be given either a list of doubles, or a single double (which will be implicitly wrapped into a list). targets: The instruction targets, such as the `D0` in `error(0.25) D0`. Examples: >>> import stim >>> m = stim.DetectorErrorModel() >>> m.append("error", 0.125, [ ... stim.DemTarget.relative_detector_id(1), ... ]) >>> m.append("error", 0.25, [ ... stim.DemTarget.relative_detector_id(1), ... stim.DemTarget.separator(), ... stim.DemTarget.relative_detector_id(2), ... stim.DemTarget.logical_observable_id(3), ... ]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.125) D1 error(0.25) D1 ^ D2 L3 ''') >>> m.append("shift_detectors", (1, 2, 3), [5]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.125) D1 error(0.25) D1 ^ D2 L3 shift_detectors(1, 2, 3) 5 ''') >>> m += m * 3 >>> m.append(m[0]) >>> m.append(m[-2]) >>> print(repr(m)) stim.DetectorErrorModel(''' error(0.125) D1 error(0.25) D1 ^ D2 L3 shift_detectors(1, 2, 3) 5 repeat 3 { error(0.125) D1 error(0.25) D1 ^ D2 L3 shift_detectors(1, 2, 3) 5 } error(0.125) D1 repeat 3 { error(0.125) D1 error(0.25) D1 ^ D2 L3 shift_detectors(1, 2, 3) 5 } ''')
Checks if a detector error model is approximately equal to another detector error model. Two detector error model are approximately equal if they are equal up to slight perturbations of instruction arguments such as probabilities. For example `error(0.100) D0` is approximately equal to `error(0.099) D0` within an absolute tolerance of 0.002. All other details of the models (such as the ordering of errors and their targets) must be exactly the same. Args: other: The detector error model, or other object, to compare to this one. atol: The absolute error tolerance. The maximum amount each probability may have been perturbed by. Returns: True if the given object is a detector error model approximately equal up to the receiving circuit up to the given tolerance, otherwise False. Examples: >>> import stim >>> base = stim.DetectorErrorModel(''' ... error(0.099) D0 D1 ... ''') >>> base.approx_equals(base, atol=0) True >>> base.approx_equals(stim.DetectorErrorModel(''' ... error(0.101) D0 D1 ... '''), atol=0) False >>> base.approx_equals(stim.DetectorErrorModel(''' ... error(0.101) D0 D1 ... '''), atol=0.0001) False >>> base.approx_equals(stim.DetectorErrorModel(''' ... error(0.101) D0 D1 ... '''), atol=0.01) True >>> base.approx_equals(stim.DetectorErrorModel(''' ... error(0.099) D0 D1 L0 L1 L2 L3 L4 ... '''), atol=9999) False
Clears the contents of the detector error model. Examples: >>> import stim >>> model = stim.DetectorErrorModel(''' ... error(0.1) D0 D1 ... ''') >>> model.clear() >>> model stim.DetectorErrorModel()
Returns a copy of the detector error model. An independent model with the same contents. Examples: >>> import stim >>> c1 = stim.DetectorErrorModel("error(0.1) D0 D1") >>> c2 = c1.copy() >>> c2 is c1 False >>> c2 == c1 True
Counts the number of detectors (e.g. `D2`) in the error model. Detector indices are assumed to be contiguous from 0 up to whatever the maximum detector id is. If the largest detector's absolute id is n-1, then the number of detectors is n. Examples: >>> import stim >>> stim.Circuit(''' ... X_ERROR(0.125) 0 ... X_ERROR(0.25) 1 ... CORRELATED_ERROR(0.375) X0 X1 ... M 0 1 ... DETECTOR rec[-2] ... DETECTOR rec[-1] ... ''').detector_error_model().num_detectors 2 >>> stim.DetectorErrorModel(''' ... error(0.1) D0 D199 ... ''').num_detectors 200 >>> stim.DetectorErrorModel(''' ... shift_detectors 1000 ... error(0.1) D0 D199 ... ''').num_detectors 1200
Counts the number of errors (e.g. `error(0.1) D0`) in the error model. Error instructions inside repeat blocks count once per repetition. Redundant errors with the same targets count as separate errors. Examples: >>> import stim >>> stim.DetectorErrorModel(''' ... error(0.125) D0 ... repeat 100 { ... repeat 5 { ... error(0.25) D1 ... } ... } ... ''').num_errors 501
Counts the number of frame changes (e.g. `L2`) in the error model. Observable indices are assumed to be contiguous from 0 up to whatever the maximum observable id is. If the largest observable's id is n-1, then the number of observables is n. Examples: >>> import stim >>> stim.Circuit(''' ... X_ERROR(0.125) 0 ... M 0 ... OBSERVABLE_INCLUDE(99) rec[-1] ... ''').detector_error_model().num_observables 100 >>> stim.DetectorErrorModel(''' ... error(0.1) L399 ... ''').num_observables 400
stim.DetectorErrorModel.shortest_graphlike_error(self, ignore_ungraphlike_errors: bool = False) -> stim.DetectorErrorModel
Finds a minimum sized set of graphlike errors that produce an undetected logical error. Note that this method does not pay attention to error probabilities (other than ignoring errors with probability 0). It searches for a logical error with the minimum *number* of physical errors, not the maximum probability of those physical errors all occurring. This method works by looking for errors that have frame changes (eg. "error(0.1) D0 D1 L5" flips the frame of observable 5). These errors are converted into one or two symptoms and a net frame change. The symptoms can then be moved around by following errors touching that symptom. Each symptom is moved until it disappears into a boundary or cancels against another remaining symptom, while leaving the other symptoms alone (ensuring only one symptom is allowed to move significantly reduces waste in the search space). Eventually a path or cycle of errors is found that cancels out the symptoms, and if there is still a frame change at that point then that path or cycle is a logical error (otherwise all that was found was a stabilizer of the system; a dead end). The search process advances like a breadth first search, seeded from all the frame-change errors and branching them outward in tandem, until one of them wins the race to find a solution. Args: ignore_ungraphlike_errors: Defaults to False. When False, an exception is raised if there are any errors in the model that are not graphlike. When True, those errors are skipped as if they weren't present. A graphlike error is an error with at most two symptoms per decomposed component. graphlike: error(0.1) D0 error(0.1) D0 D1 error(0.1) D0 D1 L0 error(0.1) D0 D1 ^ D2 not graphlike: error(0.1) D0 D1 D2 error(0.1) D0 D1 D2 ^ D3 Returns: A detector error model containing just the error instructions corresponding to an undetectable logical error. There will be no other kinds of instructions (no `repeat`s, no `shift_detectors`, etc). The error probabilities will all be set to 1. The `len` of the returned model is the graphlike code distance of the circuit. But beware that in general the true code distance may be smaller. For example, in the XZ surface code with twists, the true minimum sized logical error is likely to use Y errors. But each Y error decomposes into two graphlike components (the X part and the Z part). As a result, the graphlike code distance in that context is likely to be nearly twice as large as the true code distance. Examples: >>> import stim >>> stim.DetectorErrorModel(""" ... error(0.125) D0 ... error(0.125) D0 D1 ... error(0.125) D1 L55 ... error(0.125) D1 ... """).shortest_graphlike_error() stim.DetectorErrorModel(''' error(1) D1 error(1) D1 L55 ''') >>> stim.DetectorErrorModel(""" ... error(0.125) D0 D1 D2 ... error(0.125) L0 ... """).shortest_graphlike_error(ignore_ungraphlike_errors=True) stim.DetectorErrorModel(''' error(1) L0 ''') >>> circuit = stim.Circuit.generated( ... "repetition_code:memory", ... rounds=10, ... distance=7, ... before_round_data_depolarization=0.01) >>> model = circuit.detector_error_model(decompose_errors=True) >>> len(model.shortest_graphlike_error()) 7
Determines if two `stim.GateTarget`s are identical.
Initializes a `stim.GateTarget`. Args: value: A target like `5` or `stim.target_rec(-1)`.
Determines if two `stim.GateTarget`s are different.
Returns text that is a valid python expression evaluating to an equivalent `stim.GateTarget`.
Returns whether or not this is a `stim.target_combiner()` (a `*` in a circuit file).
Returns whether or not this is an inverted target. Inverted targets include inverted qubit targets `stim.target_inv(5)` (`!5` in a circuit file) and inverted Pauli targets like `stim.target_x(4, invert=True)` (`!X4` in a circuit file).
Returns whether or not this is a `stim.target_rec` target (e.g. `rec[-5]` in a circuit file).
Returns true if this is a qubit target (e.g. `5`) or an inverted qubit target (e.g. `stim.target_inv(4)`).
Returns whether or not this is a `stim.target_sweep_bit` target (e.g. `sweep[5]` in a circuit file).
Returns whether or not this is a `stim.target_x` target (e.g. `X5` in a circuit file).
Returns whether or not this is a `stim.target_y` target (e.g. `Y5` in a circuit file).
Returns whether or not this is a `stim.target_z` target (e.g. `Z5` in a circuit file).
The numeric part of the target. Positive for qubit targets, negative for measurement record targets.
Returns the tensor product of two Pauli strings. Concatenates the Pauli strings and multiplies their signs. Args: rhs: A second stim.PauliString. Examples: >>> import stim >>> stim.PauliString("X") + stim.PauliString("YZ") stim.PauliString("+XYZ") >>> stim.PauliString("iX") + stim.PauliString("-X") stim.PauliString("-iXX") Returns: The tensor product.
Determines if two Pauli strings have identical contents.
Returns an individual Pauli or Pauli string slice from the pauli string. Individual Paulis are returned as an int using the encoding 0=I, 1=X, 2=Y, 3=Z. Slices are returned as a stim.PauliString (always with positive sign). Examples: >>> import stim >>> p = stim.PauliString("_XYZ") >>> p[2] 2 >>> p[-1] 3 >>> p[:2] stim.PauliString("+_X") >>> p[::-1] stim.PauliString("+ZYX_") Args: index_or_slice: The index of the pauli to return, or the slice of paulis to return. Returns: 0: Identity. 1: Pauli X. 2: Pauli Y. 3: Pauli Z.
Performs an inplace tensor product. Concatenates the given Pauli string onto the receiving string and multiplies their signs. Args: rhs: A second stim.PauliString. Examples: >>> import stim >>> p = stim.PauliString("iX") >>> alias = p >>> p += stim.PauliString("-YY") >>> p stim.PauliString("-iXYY") >>> alias is p True Returns: The mutated pauli string.
Inplace right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power. Args: rhs: The right hand side of the multiplication. This can be: - A stim.PauliString to right-multiply term-by-term into the paulis of the pauli string. - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string. - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it). Examples: >>> import stim >>> p = stim.PauliString("X") >>> p *= 1j >>> p stim.PauliString("+iX") >>> p = stim.PauliString("iXY_") >>> p *= 3 >>> p stim.PauliString("-iXY_XY_XY_") >>> p = stim.PauliString("X") >>> alias = p >>> p *= stim.PauliString("Y") >>> alias stim.PauliString("+iZ") >>> p = stim.PauliString("X") >>> p *= stim.PauliString("_YY") >>> p stim.PauliString("+XYY") Returns: The mutated Pauli string. Raises: ValueError: The Pauli strings have different lengths.
Overloaded function. 1. __init__(self: stim.PauliString, num_qubits: int) -> None Creates an identity Pauli string over the given number of qubits. Examples: >>> import stim >>> p = stim.PauliString(5) >>> print(p) +_____ Args: num_qubits: The number of qubits the Pauli string acts on. 2. __init__(self: stim.PauliString, text: str) -> None Creates a stim.PauliString from a text string. The string can optionally start with a sign ('+', '-', 'i', '+i', or '-i'). The rest of the string should be characters from '_IXYZ' where '_' and 'I' mean identity, 'X' means Pauli X, 'Y' means Pauli Y, and 'Z' means Pauli Z. Examples: >>> import stim >>> print(stim.PauliString("YZ")) +YZ >>> print(stim.PauliString("+IXYZ")) +_XYZ >>> print(stim.PauliString("-___X_")) -___X_ >>> print(stim.PauliString("iX")) +iX Args: text: A text description of the Pauli string's contents, such as "+XXX" or "-_YX". 3. __init__(self: stim.PauliString, copy: stim.PauliString) -> None Creates a copy of a stim.PauliString. Examples: >>> import stim >>> a = stim.PauliString("YZ") >>> b = stim.PauliString(a) >>> b is a False >>> b == a True Args: copy: The pauli string to make a copy of. 4. __init__(self: stim.PauliString, pauli_indices: List[int]) -> None Creates a stim.PauliString from a list of integer pauli indices. The indexing scheme that is used is: 0 -> I 1 -> X 2 -> Y 3 -> Z Examples: >>> import stim >>> stim.PauliString([0, 1, 2, 3, 0, 3]) stim.PauliString("+_XYZ_Z") Args: pauli_indices: A sequence of integers from 0 to 3 (inclusive) indicating paulis.
Inplace divides the Pauli string by a complex unit. Args: rhs: The divisor. Can be 1, -1, 1j, or -1j. Examples: >>> import stim >>> p = stim.PauliString("X") >>> p /= 1j >>> p stim.PauliString("-iX") Returns: The mutated Pauli string. Raises: ValueError: The divisor isn't 1, -1, 1j, or -1j.
Returns the length the pauli string; the number of qubits it operates on.
Right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power. Args: rhs: The right hand side of the multiplication. This can be: - A stim.PauliString to right-multiply term-by-term with the paulis of the pauli string. - A complex unit (1, -1, 1j, -1j) to multiply with the sign of the pauli string. - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it). Examples: >>> import stim >>> stim.PauliString("X") * 1 stim.PauliString("+X") >>> stim.PauliString("X") * -1 stim.PauliString("-X") >>> stim.PauliString("X") * 1j stim.PauliString("+iX") >>> stim.PauliString("X") * 2 stim.PauliString("+XX") >>> stim.PauliString("-X") * 2 stim.PauliString("+XX") >>> stim.PauliString("iX") * 2 stim.PauliString("-XX") >>> stim.PauliString("X") * 3 stim.PauliString("+XXX") >>> stim.PauliString("iX") * 3 stim.PauliString("-iXXX") >>> stim.PauliString("X") * stim.PauliString("Y") stim.PauliString("+iZ") >>> stim.PauliString("X") * stim.PauliString("XX_") stim.PauliString("+_X_") >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ") stim.PauliString("+X_ZY") Returns: The product or tensor power. Raises: TypeError: The right hand side isn't a stim.PauliString, a non-negative integer, or a complex unit (1, -1, 1j, or -1j).
Determines if two Pauli strings have non-identical contents.
Returns the negation of the pauli string. Examples: >>> import stim >>> -stim.PauliString("X") stim.PauliString("-X") >>> -stim.PauliString("-Y") stim.PauliString("+Y") >>> -stim.PauliString("iZZZ") stim.PauliString("-iZZZ")
Returns a pauli string with the same contents. Examples: >>> import stim >>> +stim.PauliString("+X") stim.PauliString("+X") >>> +stim.PauliString("-YY") stim.PauliString("-YY") >>> +stim.PauliString("iZZZ") stim.PauliString("+iZZZ")
Returns text that is a valid python expression evaluating to an equivalent `stim.PauliString`.
Left-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power. Args: rhs: The left hand side of the multiplication. This can be: - A stim.PauliString to left-multiply term-by-term into the paulis of the pauli string. - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string. - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it). Examples: >>> import stim >>> 1 * stim.PauliString("X") stim.PauliString("+X") >>> -1 * stim.PauliString("X") stim.PauliString("-X") >>> 1j * stim.PauliString("X") stim.PauliString("+iX") >>> 2 * stim.PauliString("X") stim.PauliString("+XX") >>> 2 * stim.PauliString("-X") stim.PauliString("+XX") >>> 2 * stim.PauliString("iX") stim.PauliString("-XX") >>> 3 * stim.PauliString("X") stim.PauliString("+XXX") >>> 3 * stim.PauliString("iX") stim.PauliString("-iXXX") >>> stim.PauliString("X") * stim.PauliString("Y") stim.PauliString("+iZ") >>> stim.PauliString("X") * stim.PauliString("XX_") stim.PauliString("+_X_") >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ") stim.PauliString("+X_ZY") Returns: The product. Raises: ValueError: The scalar phase factor isn't 1, -1, 1j, or -1j.
Mutates an entry in the pauli string using the encoding 0=I, 1=X, 2=Y, 3=Z. Args: index: The index of the pauli to overwrite. new_pauli: Either a character from '_IXYZ' or an integer from range(4). Examples: >>> import stim >>> p = stim.PauliString(4) >>> p[2] = 1 >>> print(p) +__X_ >>> p[0] = 3 >>> p[1] = 2 >>> p[3] = 0 >>> print(p) +ZYX_ >>> p[0] = 'I' >>> p[1] = 'X' >>> p[2] = 'Y' >>> p[3] = 'Z' >>> print(p) +_XYZ >>> p[-1] = 'Y' >>> print(p) +_XYY
Returns a text description.
Divides the Pauli string by a complex unit. Args: rhs: The divisor. Can be 1, -1, 1j, or -1j. Examples: >>> import stim >>> stim.PauliString("X") / 1j stim.PauliString("-iX") Returns: The quotient. Raises: ValueError: The divisor isn't 1, -1, 1j, or -1j.
Determines if two Pauli strings commute or not. Two Pauli strings commute if they have an even number of matched non-equal non-identity Pauli terms. Otherwise they anticommute. Args: other: The other Pauli string. Examples: >>> import stim >>> xx = stim.PauliString("XX") >>> xx.commutes(stim.PauliString("X_")) True >>> xx.commutes(stim.PauliString("XX")) True >>> xx.commutes(stim.PauliString("XY")) False >>> xx.commutes(stim.PauliString("XZ")) False >>> xx.commutes(stim.PauliString("ZZ")) True >>> xx.commutes(stim.PauliString("X_Y__")) True >>> xx.commutes(stim.PauliString("")) True Returns: True if the Pauli strings commute, False if they anti-commute.
Returns a copy of the pauli string. An independent pauli string with the same contents. Examples: >>> import stim >>> p1 = stim.PauliString.random(2) >>> p2 = p1.copy() >>> p2 is p1 False >>> p2 == p1 True
stim.PauliString.extended_product(self, other: stim.PauliString) -> Tuple[complex, stim.PauliString]
[DEPRECATED] Use multiplication (__mul__ or *) instead.
Samples a uniformly random Hermitian Pauli string over the given number of qubits. Args: num_qubits: The number of qubits the Pauli string should act on. allow_imaginary: Defaults to False. If True, the sign of the result may be 1j or -1j in addition to +1 or -1. In other words, setting this to True allows the result to be non-Hermitian. Examples: >>> import stim >>> p = stim.PauliString.random(5) >>> len(p) 5 >>> p.sign in [-1, +1] True >>> p2 = stim.PauliString.random(3, allow_imaginary=True) >>> len(p2) 3 >>> p2.sign in [-1, +1, 1j, -1j] True Returns: The sampled Pauli string.
The sign of the Pauli string. Can be +1, -1, 1j, or -1j. Examples: >>> import stim >>> stim.PauliString("X").sign (1+0j) >>> stim.PauliString("-X").sign (-1+0j) >>> stim.PauliString("iX").sign 1j >>> stim.PauliString("-iX").sign (-0-1j)
Returns the direct sum (diagonal concatenation) of two Tableaus. Args: rhs: A second stim.Tableau. Examples: >>> import stim >>> s = stim.Tableau.from_named_gate("S") >>> cz = stim.Tableau.from_named_gate("CZ") >>> print(s + cz) +-xz-xz-xz- | ++ ++ ++ | YZ __ __ | __ XZ Z_ | __ Z_ XZ Returns: The direct sum.
Returns the result of conjugating the given PauliString by the Tableau's Clifford operation. Args: pauli_string: The pauli string to conjugate. Returns: The new conjugated pauli string. Examples: >>> import stim >>> t = stim.Tableau.from_named_gate("CNOT") >>> p = stim.PauliString("XX") >>> result = t(p) >>> print(result) +X_
Determines if two tableaus have identical contents.
Performs an inplace direct sum (diagonal concatenation). Args: rhs: A second stim.Tableau. Examples: >>> import stim >>> s = stim.Tableau.from_named_gate("S") >>> cz = stim.Tableau.from_named_gate("CZ") >>> alias = s >>> s += cz >>> alias is s True >>> print(s) +-xz-xz-xz- | ++ ++ ++ | YZ __ __ | __ XZ Z_ | __ Z_ XZ Returns: The mutated tableau.
Creates an identity tableau over the given number of qubits. Examples: >>> import stim >>> t = stim.Tableau(3) >>> print(t) +-xz-xz-xz- | ++ ++ ++ | XZ __ __ | __ XZ __ | __ __ XZ Args: num_qubits: The number of qubits the tableau's operation acts on.
Returns the number of qubits operated on by the tableau.
Returns the product of two tableaus. If the tableau T1 represents the Clifford operation with unitary C1, and the tableau T2 represents the Clifford operation with unitary C2, then the tableau T1*T2 represents the Clifford operation with unitary C1*C2. Args: rhs: The tableau on the right hand side of the multiplication. Examples: >>> import stim >>> t1 = stim.Tableau.random(4) >>> t2 = stim.Tableau.random(4) >>> t3 = t2 * t1 >>> p = stim.PauliString.random(4) >>> t3(p) == t2(t1(p)) True
Determines if two tableaus have non-identical contents.
Raises the tableau to an integer power. Large powers are reached efficiently using repeated squaring. Negative powers are reached by inverting the tableau. Args: exponent: The power to raise to. Can be negative, zero, or positive. Examples: >>> import stim >>> s = stim.Tableau.from_named_gate("S") >>> s**0 == stim.Tableau(1) True >>> s**1 == s True >>> s**2 == stim.Tableau.from_named_gate("Z") True >>> s**-1 == s**3 == stim.Tableau.from_named_gate("S_DAG") True >>> s**5 == s True >>> s**(400000000 + 1) == s True >>> s**(-400000000 + 1) == s True
Returns text that is a valid python expression evaluating to an equivalent `stim.Tableau`.
Returns a text description.
Appends an operation's effect into this tableau, mutating this tableau. Time cost is O(n*m*m) where n=len(self) and m=len(gate). Args: gate: The tableau of the operation being appended into this tableau. targets: The qubits being targeted by the gate. Examples: >>> import stim >>> cnot = stim.Tableau.from_named_gate("CNOT") >>> t = stim.Tableau(2) >>> t.append(cnot, [0, 1]) >>> t.append(cnot, [1, 0]) >>> t.append(cnot, [0, 1]) >>> t == stim.Tableau.from_named_gate("SWAP") True
Returns a copy of the tableau. An independent tableau with the same contents. Examples: >>> import stim >>> t1 = stim.Tableau.random(2) >>> t2 = t1.copy() >>> t2 is t1 False >>> t2 == t1 True
stim.Tableau.from_conjugated_generators(*, xs: List[stim.PauliString], zs: List[stim.PauliString]) -> stim.Tableau
Creates a tableau from the given outputs for each generator. Verifies that the tableau is well formed. Args: xs: A List[stim.PauliString] with the results of conjugating X0, X1, etc. zs: A List[stim.PauliString] with the results of conjugating Z0, Z1, etc. Returns: The created tableau. Raises: ValueError: The given outputs are malformed. Their lengths are inconsistent, or they don't satisfy the required commutation relationships. Examples: >>> import stim >>> identity3 = stim.Tableau.from_conjugated_generators( ... xs=[ ... stim.PauliString("X__"), ... stim.PauliString("_X_"), ... stim.PauliString("__X"), ... ], ... zs=[ ... stim.PauliString("Z__"), ... stim.PauliString("_Z_"), ... stim.PauliString("__Z"), ... ], ... ) >>> identity3 == stim.Tableau(3) True
Returns the tableau of a named Clifford gate. Args: name: The name of the Clifford gate. Returns: The gate's tableau. Examples: >>> import stim >>> print(stim.Tableau.from_named_gate("H")) +-xz- | ++ | ZX >>> print(stim.Tableau.from_named_gate("CNOT")) +-xz-xz- | ++ ++ | XZ _Z | X_ XZ >>> print(stim.Tableau.from_named_gate("S")) +-xz- | ++ | YZ
Computes the inverse of the tableau. The inverse T^-1 of a tableau T is the unique tableau with the property that T * T^-1 = T^-1 * T = I where I is the identity tableau. Args: unsigned: Defaults to false. When set to true, skips computing the signs of the output observables and instead just set them all to be positive. This is beneficial because computing the signs takes O(n^3) time and the rest of the inverse computation is O(n^2) where n is the number of qubits in the tableau. So, if you only need the Pauli terms (not the signs), it is significantly cheaper. Returns: The inverse tableau. Examples: >>> import stim >>> # Check that the inverse agrees with hard-coded tableaus in the gate data. >>> s = stim.Tableau.from_named_gate("S") >>> s_dag = stim.Tableau.from_named_gate("S_DAG") >>> s.inverse() == s_dag True >>> z = stim.Tableau.from_named_gate("Z") >>> z.inverse() == z True >>> # Check that multiplying by the inverse produces the identity. >>> t = stim.Tableau.random(10) >>> t_inv = t.inverse() >>> identity = stim.Tableau(10) >>> t * t_inv == t_inv * t == identity True >>> # Check a manual case. >>> t = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-__Z"), stim.PauliString("+XZ_"), stim.PauliString("+_ZZ")], ... zs=[stim.PauliString("-YYY"), stim.PauliString("+Z_Z"), stim.PauliString("-ZYZ")], ... ) >>> print(t.inverse()) +-xz-xz-xz- | -- +- -- | XX XX YX | XZ Z_ X_ | X_ YX Y_ >>> print(t.inverse(unsigned=True)) +-xz-xz-xz- | ++ ++ ++ | XX XX YX | XZ Z_ X_ | X_ YX Y_
stim.Tableau.inverse_x_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString
Returns the result of conjugating an X Pauli generator by the inverse of the tableau. A faster version of `tableau.inverse(unsigned).x_output(input_index)`. Args: input_index: Identifies the column (the qubit of the X generator) to return from the inverse tableau. unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other parts of the computation take O(n) time where n is the number of qubits in the tableau. Returns: The result of conjugating an X generator by the inverse of the tableau. Examples: >>> import stim # Check equivalence with the inverse's x_output. >>> t = stim.Tableau.random(4) >>> expected = t.inverse().x_output(0) >>> t.inverse_x_output(0) == expected True >>> expected.sign = +1; >>> t.inverse_x_output(0, unsigned=True) == expected True
Returns a Pauli term from the tableau's inverse's output pauli string for an input X generator. A constant-time equivalent for `tableau.inverse().x_output(input_index)[output_index]`. Args: input_index: Identifies the column (the qubit of the input X generator) in the inverse tableau. output_index: Identifies the row (the output qubit) in the inverse tableau. Returns: An integer identifying Pauli at the given location in the inverse tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t_inv = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ).inverse() >>> t_inv.inverse_x_output_pauli(0, 0) 2 >>> t_inv.inverse_x_output_pauli(0, 1) 0 >>> t_inv.inverse_x_output_pauli(1, 0) 2 >>> t_inv.inverse_x_output_pauli(1, 1) 3
stim.Tableau.inverse_y_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString
Returns the result of conjugating a Y Pauli generator by the inverse of the tableau. A faster version of `tableau.inverse(unsigned).y_output(input_index)`. Args: input_index: Identifies the column (the qubit of the Y generator) to return from the inverse tableau. unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other parts of the computation take O(n) time where n is the number of qubits in the tableau. Returns: The result of conjugating a Y generator by the inverse of the tableau. Examples: >>> import stim # Check equivalence with the inverse's y_output. >>> t = stim.Tableau.random(4) >>> expected = t.inverse().y_output(0) >>> t.inverse_y_output(0) == expected True >>> expected.sign = +1; >>> t.inverse_y_output(0, unsigned=True) == expected True
Returns a Pauli term from the tableau's inverse's output pauli string for an input Y generator. A constant-time equivalent for `tableau.inverse().y_output(input_index)[output_index]`. Args: input_index: Identifies the column (the qubit of the input Y generator) in the inverse tableau. output_index: Identifies the row (the output qubit) in the inverse tableau. Returns: An integer identifying Pauli at the given location in the inverse tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t_inv = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ).inverse() >>> t_inv.inverse_y_output_pauli(0, 0) 1 >>> t_inv.inverse_y_output_pauli(0, 1) 2 >>> t_inv.inverse_y_output_pauli(1, 0) 0 >>> t_inv.inverse_y_output_pauli(1, 1) 2
stim.Tableau.inverse_z_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString
Returns the result of conjugating a Z Pauli generator by the inverse of the tableau. A faster version of `tableau.inverse(unsigned).z_output(input_index)`. Args: input_index: Identifies the column (the qubit of the Z generator) to return from the inverse tableau. unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other parts of the computation take O(n) time where n is the number of qubits in the tableau. Returns: The result of conjugating a Z generator by the inverse of the tableau. Examples: >>> import stim >>> import stim # Check equivalence with the inverse's z_output. >>> t = stim.Tableau.random(4) >>> expected = t.inverse().z_output(0) >>> t.inverse_z_output(0) == expected True >>> expected.sign = +1; >>> t.inverse_z_output(0, unsigned=True) == expected True
Returns a Pauli term from the tableau's inverse's output pauli string for an input Z generator. A constant-time equivalent for `tableau.inverse().z_output(input_index)[output_index]`. Args: input_index: Identifies the column (the qubit of the input Z generator) in the inverse tableau. output_index: Identifies the row (the output qubit) in the inverse tableau. Returns: An integer identifying Pauli at the given location in the inverse tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t_inv = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ).inverse() >>> t_inv.inverse_z_output_pauli(0, 0) 3 >>> t_inv.inverse_z_output_pauli(0, 1) 2 >>> t_inv.inverse_z_output_pauli(1, 0) 2 >>> t_inv.inverse_z_output_pauli(1, 1) 1
Prepends an operation's effect into this tableau, mutating this tableau. Time cost is O(n*m*m) where n=len(self) and m=len(gate). Args: gate: The tableau of the operation being prepended into this tableau. targets: The qubits being targeted by the gate. Examples: >>> import stim >>> h = stim.Tableau.from_named_gate("H") >>> cnot = stim.Tableau.from_named_gate("CNOT") >>> t = stim.Tableau.from_named_gate("H") >>> t.prepend(stim.Tableau.from_named_gate("X"), [0]) >>> t == stim.Tableau.from_named_gate("SQRT_Y_DAG") True
Samples a uniformly random Clifford operation over the given number of qubits and returns its tableau. Args: num_qubits: The number of qubits the tableau should act on. Returns: The sampled tableau. Examples: >>> import stim >>> t = stim.Tableau.random(42) References: "Hadamard-free circuits expose the structure of the Clifford group" Sergey Bravyi, Dmitri Maslov https://arxiv.org/abs/2003.09412
Returns the result of composing two tableaus. If the tableau T1 represents the Clifford operation with unitary C1, and the tableau T2 represents the Clifford operation with unitary C2, then the tableau T1.then(T2) represents the Clifford operation with unitary C2*C1. Args: second: The result is equivalent to applying the second tableau after the receiving tableau. Examples: >>> import stim >>> t1 = stim.Tableau.random(4) >>> t2 = stim.Tableau.random(4) >>> t3 = t1.then(t2) >>> p = stim.PauliString.random(4) >>> t3(p) == t2(t1(p)) True
Returns the result of conjugating a Pauli X by the tableau's Clifford operation. Args: target: The qubit targeted by the Pauli X operation. Examples: >>> import stim >>> h = stim.Tableau.from_named_gate("H") >>> h.x_output(0) stim.PauliString("+Z") >>> cnot = stim.Tableau.from_named_gate("CNOT") >>> cnot.x_output(0) stim.PauliString("+XX") >>> cnot.x_output(1) stim.PauliString("+_X")
Returns a Pauli term from the tableau's output pauli string for an input X generator. A constant-time equivalent for `tableau.x_output(input_index)[output_index]`. Args: input_index: Identifies the tableau column (the qubit of the input X generator). output_index: Identifies the tableau row (the output qubit). Returns: An integer identifying Pauli at the given location in the tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ) >>> t.x_output_pauli(0, 0) 2 >>> t.x_output_pauli(0, 1) 0 >>> t.x_output_pauli(1, 0) 2 >>> t.x_output_pauli(1, 1) 3
Returns the result of conjugating a Pauli Y by the tableau's Clifford operation. Args: target: The qubit targeted by the Pauli Y operation. Examples: >>> import stim >>> h = stim.Tableau.from_named_gate("H") >>> h.y_output(0) stim.PauliString("-Y") >>> cnot = stim.Tableau.from_named_gate("CNOT") >>> cnot.y_output(0) stim.PauliString("+YX") >>> cnot.y_output(1) stim.PauliString("+ZY")
Returns a Pauli term from the tableau's output pauli string for an input Y generator. A constant-time equivalent for `tableau.y_output(input_index)[output_index]`. Args: input_index: Identifies the tableau column (the qubit of the input Y generator). output_index: Identifies the tableau row (the output qubit). Returns: An integer identifying Pauli at the given location in the tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ) >>> t.y_output_pauli(0, 0) 1 >>> t.y_output_pauli(0, 1) 2 >>> t.y_output_pauli(1, 0) 0 >>> t.y_output_pauli(1, 1) 2
Returns the result of conjugating a Pauli Z by the tableau's Clifford operation. Args: target: The qubit targeted by the Pauli Z operation. Examples: >>> import stim >>> h = stim.Tableau.from_named_gate("H") >>> h.z_output(0) stim.PauliString("+X") >>> cnot = stim.Tableau.from_named_gate("CNOT") >>> cnot.z_output(0) stim.PauliString("+Z_") >>> cnot.z_output(1) stim.PauliString("+ZZ")
Returns a Pauli term from the tableau's output pauli string for an input Z generator. A constant-time equivalent for `tableau.z_output(input_index)[output_index]`. Args: input_index: Identifies the tableau column (the qubit of the input Z generator). output_index: Identifies the tableau row (the output qubit). Returns: An integer identifying Pauli at the given location in the tableau: 0: I 1: X 2: Y 3: Z Examples: >>> import stim >>> t = stim.Tableau.from_conjugated_generators( ... xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")], ... zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")], ... ) >>> t.z_output_pauli(0, 0) 3 >>> t.z_output_pauli(0, 1) 2 >>> t.z_output_pauli(1, 0) 2 >>> t.z_output_pauli(1, 1) 1
Returns a list of the stabilizers of the simulator's current state in a standard form. Two simulators have the same canonical stabilizers if and only if their current quantum state is equal (and tracking the same number of qubits). The canonical form is computed as follows: 1. Get a list of stabilizers using the `z_output`s of `simulator.current_inverse_tableau()**-1`. 2. Perform Gaussian elimination on each generator g (ordered X0, Z0, X1, Z1, X2, Z2, etc). 2a) Pick any stabilizer that uses the generator g. If there are none, go to the next g. 2b) Multiply that stabilizer into all other stabilizers that use the generator g. 2c) Swap that stabilizer with the stabilizer at position `next_output` then increment `next_output`. Returns: A List[stim.PauliString] of the simulator's state's stabilizers. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.h(0) >>> s.cnot(0, 1) >>> s.x(2) >>> s.canonical_stabilizers() [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")] >>> # Scramble the stabilizers then check that the canonical form is unchanged. >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1) >>> s.cnot(0, 1) >>> s.cz(0, 2) >>> s.s(0, 2) >>> s.cy(2, 1) >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1) >>> s.canonical_stabilizers() [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")]
Applies a controlled X gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Returns a copy of the simulator. A simulator with the same internal state. Examples: >>> import stim >>> s1 = stim.TableauSimulator() >>> s1.set_inverse_tableau(stim.Tableau.random(1)) >>> s2 = s1.copy() >>> s2 is s1 False >>> s2.current_inverse_tableau() == s1.current_inverse_tableau() True >>> s = stim.TableauSimulator() >>> def brute_force_post_select(qubit, desired_result): ... global s ... while True: ... copy = s.copy() ... if copy.measure(qubit) == desired_result: ... s = copy ... break >>> s.h(0) >>> brute_force_post_select(qubit=0, desired_result=True) >>> s.measure(0) True
Returns a copy of the internal state of the simulator as a stim.Tableau. Returns: A stim.Tableau copy of the simulator's state. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.h(0) >>> s.current_inverse_tableau() stim.Tableau.from_conjugated_generators( xs=[ stim.PauliString("+Z"), ], zs=[ stim.PauliString("+X"), ], ) >>> s.cnot(0, 1) >>> s.current_inverse_tableau() stim.Tableau.from_conjugated_generators( xs=[ stim.PauliString("+ZX"), stim.PauliString("+_X"), ], zs=[ stim.PauliString("+X_"), stim.PauliString("+XZ"), ], )
Returns a copy of the record of all measurements performed by the simulator. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.current_measurement_record() [] >>> s.measure(0) False >>> s.x(0) >>> s.measure(0) True >>> s.current_measurement_record() [False, True] >>> s.do(stim.Circuit("M 0")) >>> s.current_measurement_record() [False, True, True] Returns: A list of booleans containing the result of every measurement performed by the simulator so far.
Applies a controlled Y gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a controlled Z gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Overloaded function. 1. do(self: stim.TableauSimulator, circuit: stim.Circuit) -> None Applies all the operations in the given stim.Circuit to the simulator's state. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.do(stim.Circuit(''' ... X 0 ... M 0 ... ''')) >>> s.current_measurement_record() [True] Args: circuit: A stim.Circuit containing operations to apply. 2. do(self: stim.TableauSimulator, pauli_string: stim.PauliString) -> None Applies all the Pauli operations in the given stim.PauliString to the simulator's state. The Pauli at offset k is applied to the qubit with index k. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.do(stim.PauliString("IXYZ")) >>> s.measure_many(0, 1, 2, 3) [False, True, True, False] Args: pauli_string: A stim.PauliString containing Pauli operations to apply.
Applies a Hadamard gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a variant of the Hadamard gate that swaps the X and Y axes to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a variant of the Hadamard gate that swaps the Y and Z axes to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies an ISWAP gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies an ISWAP_DAG gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Measures a single qubit. Unlike the other methods on TableauSimulator, this one does not broadcast over multiple targets. This is to avoid returning a list, which would create a pitfall where typing `if sim.measure(qubit)` would be a bug. To measure multiple qubits, use `TableauSimulator.measure_many`. Args: target: The index of the qubit to measure. Returns: The measurement result as a bool.
Measures a qubit and returns the result as well as its Pauli kickback (if any). The "Pauli kickback" of a stabilizer circuit measurement is a set of Pauli operations that flip the post-measurement system state between the two possible post-measurement states. For example, consider measuring one of the qubits in the state |00>+|11> in the Z basis. If the measurement result is False, then the system projects into the state |00>. If the measurement result is True, then the system projects into the state |11>. Applying a Pauli X operation to both qubits flips between |00> and |11>. Therefore the Pauli kickback of the measurement is `stim.PauliString("XX")`. Note that there are often many possible equivalent Pauli kickbacks. For example, if in the previous example there was a third qubit in the |0> state, then both `stim.PauliString("XX_")` and `stim.PauliString("XXZ")` are valid kickbacks. Measurements with determinist results don't have a Pauli kickback. Args: target: The index of the qubit to measure. Returns: A (result, kickback) tuple. The result is a bool containing the measurement's output. The kickback is either None (meaning the measurement was deterministic) or a stim.PauliString (meaning the measurement was random, and the operations in the Pauli string flip between the two possible post-measurement states). Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.measure_kickback(0) (False, None) >>> s.h(0) >>> s.measure_kickback(0)[1] stim.PauliString("+X") >>> def pseudo_post_select(qubit, desired_result): ... m, kick = s.measure_kickback(qubit) ... if m != desired_result: ... if kick is None: ... raise ValueError("Deterministic measurement differed from desired result.") ... s.do(kick) >>> s = stim.TableauSimulator() >>> s.h(0) >>> s.cnot(0, 1) >>> s.cnot(0, 2) >>> pseudo_post_select(qubit=2, desired_result=True) >>> s.measure_many(0, 1, 2) [True, True, True]
Measures multiple qubits. Args: *targets: The indices of the qubits to measure. Returns: The measurement results as a list of bools.
Returns the current bloch vector of the qubit, represented as a stim.PauliString. This is a non-physical operation. It reports information about the qubit without disturbing it. Args: target: The qubit to peek at. Returns: stim.PauliString("I"): The qubit is entangled. Its bloch vector is x=y=z=0. stim.PauliString("+Z"): The qubit is in the |0> state. Its bloch vector is z=+1, x=y=0. stim.PauliString("-Z"): The qubit is in the |1> state. Its bloch vector is z=-1, x=y=0. stim.PauliString("+Y"): The qubit is in the |i> state. Its bloch vector is y=+1, x=z=0. stim.PauliString("-Y"): The qubit is in the |-i> state. Its bloch vector is y=-1, x=z=0. stim.PauliString("+X"): The qubit is in the |+> state. Its bloch vector is x=+1, y=z=0. stim.PauliString("-X"): The qubit is in the |-> state. Its bloch vector is x=-1, y=z=0. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.peek_bloch(0) stim.PauliString("+Z") >>> s.x(0) >>> s.peek_bloch(0) stim.PauliString("-Z") >>> s.h(0) >>> s.peek_bloch(0) stim.PauliString("-X") >>> s.sqrt_x(1) >>> s.peek_bloch(1) stim.PauliString("-Y") >>> s.cz(0, 1) >>> s.peek_bloch(0) stim.PauliString("+_")
Determines the expected value of an observable (which will always be -1, 0, or +1). This is a non-physical operation. It reports information about the quantum state without disturbing it. Args: observable: The observable to determine the expected value of. This observable must have a real sign, not an imaginary sign. Returns: +1: Observable will be deterministically false when measured. -1: Observable will be deterministically true when measured. 0: Observable will be random when measured. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> s.peek_observable_expectation(stim.PauliString("+Z")) 1 >>> s.peek_observable_expectation(stim.PauliString("+X")) 0 >>> s.peek_observable_expectation(stim.PauliString("-Z")) -1 >>> s.do(stim.Circuit(''' ... H 0 ... CNOT 0 1 ... ''')) >>> queries = ['XX', 'YY', 'ZZ', '-ZZ', 'ZI', 'II', 'IIZ'] >>> for q in queries: ... print(q, s.peek_observable_expectation(stim.PauliString(q))) XX 1 YY -1 ZZ 1 -ZZ -1 ZI 0 II 1 IIZ 1
Resets qubits to zero (e.g. by swapping them for zero'd qubit from the environment). Args: *targets: The indices of the qubits to reset.
Applies a SQRT_Z gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a SQRT_Z_DAG gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Overwrites the simulator's internal state with a copy of the given inverse tableau. The inverse tableau specifies how Pauli product observables of qubits at the current time transform into equivalent Pauli product observables at the beginning of time, when all qubits were in the |0> state. For example, if the Z observable on qubit 5 maps to a product of Z observables at the start of time then a Z basis measurement on qubit 5 will be deterministic and equal to the sign of the product. Whereas if it mapped to a product of observables including an X or a Y then the Z basis measurement would be random. Any qubits not within the length of the tableau are implicitly in the |0> state. Args: new_inverse_tableau: The tableau to overwrite the internal state with. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> t = stim.Tableau.random(4) >>> s.set_inverse_tableau(t) >>> s.current_inverse_tableau() == t True
Forces the simulator's internal state to track exactly the qubits whose indices are in range(new_num_qubits). Note that untracked qubits are always assumed to be in the |0> state. Therefore, calling this method will effectively force any qubit whose index is outside range(new_num_qubits) to be reset to |0>. Note that this method does not prevent future operations from implicitly expanding the size of the tracked state (e.g. setting the number of qubits to 5 will not prevent a Hadamard from then being applied to qubit 100, increasing the number of qubits to 101). Args: new_num_qubits: The length of the range of qubits the internal simulator should be tracking. Examples: >>> import stim >>> s = stim.TableauSimulator() >>> len(s.current_inverse_tableau()) 0 >>> s.set_num_qubits(5) >>> len(s.current_inverse_tableau()) 5 >>> s.x(0, 1, 2, 3) >>> s.set_num_qubits(2) >>> s.measure_many(0, 1, 2, 3) [True, True, False, False]
Applies a SQRT_X gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a SQRT_X_DAG gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a SQRT_Y gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a SQRT_Y_DAG gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Returns a wavefunction that satisfies the stabilizers of the simulator's current state. This function takes O(n * 2**n) time and O(2**n) space, where n is the number of qubits. The computation is done by initialization a random state vector and iteratively projecting it into the +1 eigenspace of each stabilizer of the state. The global phase of the result is arbitrary (and will vary from call to call). The result is in little endian order. The amplitude at offset b_0 + b_1*2 + b_2*4 + ... + b_{n-1}*2^{n-1} is the amplitude for the computational basis state where the qubit with index 0 is storing the bit b_0, the qubit with index 1 is storing the bit b_1, etc. Returns: A `numpy.ndarray[numpy.complex64]` of computational basis amplitudes in little endian order. Examples: >>> import stim >>> import numpy as np >>> # Check that the qubit-to-amplitude-index ordering is little-endian. >>> s = stim.TableauSimulator() >>> s.x(1) >>> s.x(4) >>> vector = s.state_vector() >>> np.abs(vector[0b_10010]).round(2) 1.0 >>> tensor = vector.reshape((2, 2, 2, 2, 2)) >>> np.abs(tensor[1, 0, 0, 1, 0]).round(2) 1.0
Applies a swap gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a Pauli X gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies an X-controlled X gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies an X-controlled Y gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies an X-controlled Z gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a Pauli Y gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.
Applies a Y-controlled X gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a Y-controlled Y gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a Y-controlled Z gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate. Applies the gate to the first two targets, then the next two targets, and so forth. There must be an even number of targets.
Applies a Pauli Z gate to the simulator's state. Args: *targets: The indices of the qubits to target with the gate.