Skip to content

Latest commit

 

History

History
4484 lines (4254 loc) · 160 KB

python_api_reference_vDev.md

File metadata and controls

4484 lines (4254 loc) · 160 KB

Stim (Development Version) API Reference

Index

stim.Circuit

A mutable stabilizer circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_operation("X", [0])
    >>> c.append_operation("M", [0])
    >>> c.compile_sampler().sample(shots=1)
    array([[1]], dtype=uint8)

    >>> stim.Circuit('''
    ...    H 0
    ...    CNOT 0 1
    ...    M 0 1
    ...    DETECTOR rec[-1] rec[-2]
    ... ''').compile_detector_sampler().sample(shots=1)
    array([[0]], dtype=uint8)

stim.CircuitInstruction

An instruction, like `H 0 1` or `CNOT rec[-1] 5`, from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     M 0 !1
    ...     X_ERROR(0.125) 5 3
    ... ''')
    >>> circuit[0]
    stim.CircuitInstruction('H', [stim.GateTarget(0)], [])
    >>> circuit[1]
    stim.CircuitInstruction('M', [stim.GateTarget(0), stim.GateTarget(stim.target_inv(1))], [])
    >>> circuit[2]
    stim.CircuitInstruction('X_ERROR', [stim.GateTarget(5), stim.GateTarget(3)], [0.125])

stim.CircuitRepeatBlock

A REPEAT block from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.repeat_count
    5
    >>> repeat_block.body_copy()
    stim.Circuit('''
        CX 0 1
        CZ 1 2
    ''')

stim.CompiledDetectorSampler

An analyzed stabilizer circuit whose detection events can be sampled quickly.

stim.CompiledMeasurementSampler

An analyzed stabilizer circuit whose measurements can be sampled quickly.

stim.CompiledMeasurementsToDetectionEventsConverter

A tool for quickly converting measurements from an analyzed stabilizer circuit into detection events.

stim.DemInstruction

An instruction from a detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     error(0.125) D0
    ...     error(0.125) D0 D1 L0
    ...     error(0.125) D1 D2
    ...     error(0.125) D2 D3
    ...     error(0.125) D3
    ... ''')
    >>> instruction = model[0]
    >>> instruction
    stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(0)])

stim.DemRepeatBlock

A repeat block from a detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     repeat 100 {
    ...         error(0.125) D0 D1
    ...         shift_detectors 1
    ...     }
    ... ''')
    >>> model[0]
    stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
        error(0.125) D0 D1
        shift_detectors 1
    '''))

stim.DemTarget

An instruction target from a detector error model (.dem) file.

stim.DetectorErrorModel

A list of instructions describing error mechanisms in terms of the detection events they produce.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     error(0.125) D0
    ...     error(0.125) D0 D1 L0
    ...     error(0.125) D1 D2
    ...     error(0.125) D2 D3
    ...     error(0.125) D3
    ... ''')
    >>> len(model)
    5

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model()
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.375) D0 D1
        error(0.25) D1
    ''')

stim.GateTarget

Represents a gate target, like `0` or `rec[-1]`, from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     M 0 !1
    ... ''')
    >>> circuit[0].targets_copy()[0]
    stim.GateTarget(0)
    >>> circuit[0].targets_copy()[1]
    stim.GateTarget(stim.target_inv(1))

stim.PauliString

A signed Pauli tensor product (e.g. "+X \u2297 X \u2297 X" or "-Y \u2297 Z".

Represents a collection of Pauli operations (I, X, Y, Z) applied pairwise to a collection of qubits.

Examples:
    >>> import stim
    >>> stim.PauliString("XX") * stim.PauliString("YY")
    stim.PauliString("-ZZ")
    >>> print(stim.PauliString(5))
    +_____

stim.Tableau

A stabilizer tableau.

Represents a Clifford operation by explicitly storing how that operation conjugates a list of Pauli
group generators into composite Pauli products.

Examples:
    >>> import stim
    >>> stim.Tableau.from_named_gate("H")
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+Z"),
        ],
        zs=[
            stim.PauliString("+X"),
        ],
    )

    >>> t = stim.Tableau.random(5)
    >>> t_inv = t**-1
    >>> print(t * t_inv)
    +-xz-xz-xz-xz-xz-
    | ++ ++ ++ ++ ++
    | XZ __ __ __ __
    | __ XZ __ __ __
    | __ __ XZ __ __
    | __ __ __ XZ __
    | __ __ __ __ XZ

    >>> x2z3 = t.x_output(2) * t.z_output(3)
    >>> t_inv(x2z3)
    stim.PauliString("+__XZ_")

stim.TableauSimulator

A quantum stabilizer circuit simulator whose internal state is an inverse stabilizer tableau.

Supports interactive usage, where gates and measurements are applied on demand.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> if s.measure(0):
    ...     s.h(1)
    ...     s.cnot(1, 2)
    >>> s.measure(1) == s.measure(2)
    True

    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+ZX"),
            stim.PauliString("+_X"),
        ],
        zs=[
            stim.PauliString("+X_"),
            stim.PauliString("+XZ"),
        ],
    )

stim.target_combiner() -> stim.GateTarget

Returns a target combiner (`*` in circuit files) that can be used as an operation target.

stim.target_inv(qubit_index: int) -> int

Returns a target flagged as inverted that can be passed into Circuit.append_operation
For example, the '!1' in 'M 0 !1 2' is qubit 1 flagged as inverted,
meaning the measurement result from qubit 1 should be inverted when reported.

stim.target_logical_observable_id(index: int) -> stim.DemTarget

Returns a logical observable id identifying a frame change (e.g. "L5" in a .dem file).

Args:
    index: The index of the observable.

Returns:
    The logical observable target.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.target_logical_observable_id(13)
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) L13
    ''')

stim.target_rec(lookback_index: int) -> int

Returns a record target that can be passed into Circuit.append_operation.
For example, the 'rec[-2]' in 'DETECTOR rec[-2]' is a record target.

stim.target_relative_detector_id(index: int) -> stim.DemTarget

Returns a relative detector id (e.g. "D5" in a .dem file).

Args:
    index: The index of the detector, relative to the current detector offset.

Returns:
    The relative detector target.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.target_relative_detector_id(13)
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) D13
    ''')

stim.target_separator() -> stim.DemTarget

Returns a target separator (e.g. "^" in a .dem file).

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.target_relative_detector_id(1),
    ...     stim.target_separator(),
    ...     stim.target_relative_detector_id(2),
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) D1 ^ D2
    ''')

stim.target_sweep_bit(sweep_bit_index: int) -> int

Returns a sweep bit target that can be passed into Circuit.append_operation
For example, the 'sweep[5]' in 'CNOT sweep[5] 7' is from `stim.target_sweep_bit(5)`.

stim.target_x(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli X that can be passed into Circuit.append_operation
For example, the 'X1' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 1 flagged as Pauli X.

stim.target_y(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli Y that can be passed into Circuit.append_operation
For example, the 'Y2' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 2 flagged as Pauli Y.

stim.target_z(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli Z that can be passed into Circuit.append_operation
For example, the 'Z3' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 3 flagged as Pauli Z.

stim.Circuit.__add__(self, second: stim.Circuit) -> stim.Circuit

Creates a circuit by appending two circuits.

Examples:
    >>> import stim
    >>> c1 = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c2 = stim.Circuit('''
    ...    M 0 1 2
    ... ''')
    >>> c1 + c2
    stim.Circuit('''
        X 0
        Y 1 2
        M 0 1 2
    ''')

stim.Circuit.__eq__(self, arg0: stim.Circuit) -> bool

Determines if two circuits have identical contents.

stim.Circuit.__getitem__(self, index_or_slice: object) -> object

Returns copies of instructions from the circuit.

Args:
    index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range
        of instructions to return as a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...    X 0
    ...    X_ERROR(0.5) 1 2
    ...    REPEAT 100 {
    ...        X 0
    ...        Y 1 2
    ...    }
    ...    TICK
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''')
    >>> circuit[1]
    stim.CircuitInstruction('X_ERROR', [stim.GateTarget(1), stim.GateTarget(2)], [0.5])
    >>> circuit[2]
    stim.CircuitRepeatBlock(100, stim.Circuit('''
        X 0
        Y 1 2
    '''))
    >>> circuit[1::2]
    stim.Circuit('''
        X_ERROR(0.5) 1 2
        TICK
        DETECTOR rec[-1]
    ''')

stim.Circuit.__iadd__(self, second: stim.Circuit) -> stim.Circuit

Appends a circuit into the receiving circuit (mutating it).

Examples:
    >>> import stim
    >>> c1 = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c2 = stim.Circuit('''
    ...    M 0 1 2
    ... ''')
    >>> c1 += c2
    >>> print(repr(c1))
    stim.Circuit('''
        X 0
        Y 1 2
        M 0 1 2
    ''')

stim.Circuit.__imul__(self, repetitions: int) -> stim.Circuit

Mutates the circuit by putting its contents into a REPEAT block.

Special case: if the repetition count is 0, the circuit is cleared.
Special case: if the repetition count is 1, nothing happens.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c *= 3
    >>> print(repr(c))
    stim.Circuit('''
        REPEAT 3 {
            X 0
            Y 1 2
        }
    ''')

stim.Circuit.__init__(self, stim_program_text: str = '') -> None

Creates a stim.Circuit.

Args:
    stim_program_text: Defaults to empty. Describes operations to append into the circuit.

Examples:
    >>> import stim
    >>> empty = stim.Circuit()
    >>> not_empty = stim.Circuit('''
    ...    X 0
    ...    CNOT 0 1
    ...    M 1
    ... ''')

stim.Circuit.__len__(self) -> int

Returns the number of top-level instructions and blocks in the circuit.

Instructions inside of blocks are not included in this count.

Examples:
    >>> import stim
    >>> len(stim.Circuit())
    0
    >>> len(stim.Circuit('''
    ...    X 0
    ...    X_ERROR(0.5) 1 2
    ...    TICK
    ...    M 0
    ...    DETECTOR rec[-1]
    ... '''))
    5
    >>> len(stim.Circuit('''
    ...    REPEAT 100 {
    ...        X 0
    ...        Y 1 2
    ...    }
    ... '''))
    1

stim.Circuit.__mul__(self, repetitions: int) -> stim.Circuit

Returns a circuit with a REPEAT block containing the current circuit's instructions.

Special case: if the repetition count is 0, an empty circuit is returned.
Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c * 3
    stim.Circuit('''
        REPEAT 3 {
            X 0
            Y 1 2
        }
    ''')

stim.Circuit.__ne__(self, arg0: stim.Circuit) -> bool

Determines if two circuits have non-identical contents.

stim.Circuit.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.Circuit`.

stim.Circuit.__rmul__(self, repetitions: int) -> stim.Circuit

Returns a circuit with a REPEAT block containing the current circuit's instructions.

Special case: if the repetition count is 0, an empty circuit is returned.
Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> 3 * c
    stim.Circuit('''
        REPEAT 3 {
            X 0
            Y 1 2
        }
    ''')

stim.Circuit.__str__(self) -> str

Returns stim instructions (that can be saved to a file and parsed by stim) for the current circuit.

stim.Circuit.append_from_stim_program_text(self, stim_program_text: str) -> None

Appends operations described by a STIM format program into the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_from_stim_program_text('''
    ...    H 0  # comment
    ...    CNOT 0 2
    ...
    ...    M 2
    ...    CNOT rec[-1] 1
    ... ''')
    >>> print(c)
    H 0
    CX 0 2
    M 2
    CX rec[-1] 1

Args:
    text: The STIM program text containing the circuit operations to append.

stim.Circuit.append_operation(self, name: object, targets: List[object] = (), arg: object = None) -> None

Appends an operation into the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_operation("X", [0])
    >>> c.append_operation("H", [0, 1])
    >>> c.append_operation("M", [0, stim.target_inv(1)])
    >>> c.append_operation("CNOT", [stim.target_rec(-1), 0])
    >>> c.append_operation("X_ERROR", [0], 0.125)
    >>> c.append_operation("CORRELATED_ERROR", [stim.target_x(0), stim.target_y(2)], 0.25)
    >>> print(repr(c))
    stim.Circuit('''
        X 0
        H 0 1
        M 0 !1
        CX rec[-1] 0
        X_ERROR(0.125) 0
        E(0.25) X0 Y2
    ''')

Args:
    name: The name of the operation's gate (e.g. "H" or "M" or "CNOT").

        This argument can also be set to a `stim.CircuitInstruction` or `stim.CircuitInstructionBlock`, which
        results in the instruction or block being appended to the circuit. The other arguments (targets and
        arg) can't be specified when doing so.

        (The argument name `name` is no longer quite right, but being kept for backwards compatibility.)
    targets: The gate targets. Gates implicitly broadcast over their targets.
    arg: A double or list of doubles parameterizing the gate. Different gates take different arguments. For
        example, X_ERROR takes a probability, OBSERVABLE_INCLUDE takes an observable index, and PAULI_CHANNEL_1
        takes three disjoint probabilities. For backwards compatibility reasons, defaults to (0,) for gates
        that take exactly one argument. Otherwise defaults to no arguments.

stim.Circuit.approx_equals(self, other: object, *, atol: float) -> bool

Checks if a circuit is approximately equal to another circuit.

Two circuits are approximately equal if they are equal up to slight perturbations of instruction arguments
such as probabilities. For example `X_ERROR(0.100) 0` is approximately equal to `X_ERROR(0.099)` within an
absolute tolerance of 0.002. All other details of the circuits (such as the ordering of instructions and
targets) must be exactly the same.

Args:
    other: The circuit, or other object, to compare to this one.
    atol: The absolute error tolerance. The maximum amount each probability may have been perturbed by.

Returns:
    True if the given object is a circuit approximately equal up to the receiving circuit up to the given
    tolerance, otherwise False.

Examples:
    >>> import stim
    >>> base = stim.Circuit('''
    ...    X_ERROR(0.099) 0 1 2
    ...    M 0 1 2
    ... ''')

    >>> base.approx_equals(base, atol=0)
    True

    >>> base.approx_equals(stim.Circuit('''
    ...    X_ERROR(0.101) 0 1 2
    ...    M 0 1 2
    ... '''), atol=0)
    False

    >>> base.approx_equals(stim.Circuit('''
    ...    X_ERROR(0.101) 0 1 2
    ...    M 0 1 2
    ... '''), atol=0.0001)
    False

    >>> base.approx_equals(stim.Circuit('''
    ...    X_ERROR(0.101) 0 1 2
    ...    M 0 1 2
    ... '''), atol=0.01)
    True

    >>> base.approx_equals(stim.Circuit('''
    ...    DEPOLARIZE1(0.099) 0 1 2
    ...    MRX 0 1 2
    ... '''), atol=9999)
    False

stim.Circuit.clear(self) -> None

Clears the contents of the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c.clear()
    >>> c
    stim.Circuit()

stim.Circuit.compile_detector_sampler(self, *, seed: object = None) -> stim.CompiledDetectorSampler

Returns a CompiledDetectorSampler, which can quickly batch sample detection events, for the circuit.

Args:
    seed: PARTIALLY determines simulation results by deterministically seeding the random number generator.
        Must be None or an integer in range(2**64).

        Defaults to None. When set to None, a prng seeded by system entropy is used.

        When set to an integer, making the exact same series calls on the exact same machine with the exact
        same version of Stim will produce the exact same simulation results.

        CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is
        present to make it possible to have future optimizations to the random sampling, and is enforced by
        introducing intentional differences in the seeding strategy from version to version.

        CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of
        supported SIMD instructions. For example, using the same seed on a machine that supports AVX
        instructions and one that only supports SSE instructions may produce different simulation results.

        CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For
        example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one
        call.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    H 0
    ...    CNOT 0 1
    ...    M 0 1
    ...    DETECTOR rec[-1] rec[-2]
    ... ''')
    >>> s = c.compile_detector_sampler()
    >>> s.sample(shots=1)
    array([[0]], dtype=uint8)

stim.Circuit.compile_m2d_converter(self, *, skip_reference_sample: bool = False) -> stim.CompiledMeasurementsToDetectionEventsConverter

Returns an object that can efficiently convert measurements into detection events for the given circuit.

The converter uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator
during initialization of the converter, as a baseline for determining what the expected value of a detector
is.

Note that the expected behavior of gauge detectors (detectors that are not actually deterministic under
noiseless execution) can vary depending on the reference sample. Stim mitigates this by always generating
the same reference sample for a given circuit.

Args:
    skip_reference_sample: Defaults to False. When set to True, the reference sample used by the converter
        is initialized to all-zeroes instead of being collected from the circuit. This should only be used
        if it's known that the all-zeroes sample is actually a possible result from the circuit (under
        noiseless execution).

Returns:
    An initialized stim.CompiledMeasurementsToDetectionEventsConverter.

Examples:
    >>> import stim
    >>> import numpy as np
    >>> converter = stim.Circuit('''
    ...    X 0
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''').compile_m2d_converter()
    >>> converter.convert(
    ...     measurements=np.array([[0], [1]], dtype=np.bool8),
    ...     append_observables=False,
    ... )
    array([[ True],
           [False]])

stim.Circuit.compile_sampler(self, *, skip_reference_sample: bool = False, seed: object = None) -> stim.CompiledMeasurementSampler

Returns a CompiledMeasurementSampler, which can quickly batch sample measurements, for the circuit.

Args:
    skip_reference_sample: Defaults to False. When set to True, the reference sample used by the sampler is
        initialized to all-zeroes instead of being collected from the circuit. This means that the results
        returned by the sampler are actually whether or not each measurement was *flipped*, instead of true
        measurement results.

        Forcing an all-zero reference sample is useful when you are only interested in error propagation and
        don't want to have to deal with the fact that some measurements want to be On when no errors occur.
        It is also useful when you know for sure that the all-zero result is actually a possible result from
        the circuit (under noiseless execution), meaning it is a valid reference sample as good as any
        other. Computing the reference sample is the most time consuming and memory intensive part of
        simulating the circuit, so promising that the simulator can safely skip that step is an effective
        optimization.
    seed: PARTIALLY determines simulation results by deterministically seeding the random number generator.
        Must be None or an integer in range(2**64).

        Defaults to None. When set to None, a prng seeded by system entropy is used.

        When set to an integer, making the exact same series calls on the exact same machine with the exact
        same version of Stim will produce the exact same simulation results.

        CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is
        present to make it possible to have future optimizations to the random sampling, and is enforced by
        introducing intentional differences in the seeding strategy from version to version.

        CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of
        supported SIMD instructions. For example, using the same seed on a machine that supports AVX
        instructions and one that only supports SSE instructions may produce different simulation results.

        CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For
        example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one
        call.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 2
    ...    M 0 1 2
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample(shots=1)
    array([[0, 0, 1]], dtype=uint8)

stim.Circuit.copy(self) -> stim.Circuit

Returns a copy of the circuit. An independent circuit with the same contents.

Examples:
    >>> import stim

    >>> c1 = stim.Circuit("H 0")
    >>> c2 = c1.copy()
    >>> c2 is c1
    False
    >>> c2 == c1
    True

stim.Circuit.detector_error_model(self, *, decompose_errors: bool = False, flatten_loops: bool = False, allow_gauge_detectors: bool = False, approximate_disjoint_errors: float = False) -> stim.DetectorErrorModel

Returns a stim.DetectorErrorModel describing the error processes in the circuit.

Args:
    decompose_errors: Defaults to false. When set to true, the error analysis attempts to decompose the
        components of composite error mechanisms (such as depolarization errors) into simpler errors, and
        suggest this decomposition via `stim.target_separator()` between the components. For example, in an
        XZ surface code, single qubit depolarization has a Y error term which can be decomposed into simpler
        X and Z error terms. Decomposition fails (causing this method to throw) if it's not possible to
        decompose large errors into simple errors that affect at most two detectors.
    flatten_loops: Defaults to false. When set to true, the output will not contain any `repeat` blocks.
        When set to false, the error analysis watches for loops in the circuit reaching a periodic steady
        state with respect to the detectors being introduced, the error mechanisms that affect them, and the
        locations of the logical observables. When it identifies such a steady state, it outputs a repeat
        block. This is massively more efficient than flattening for circuits that contain loops, but creates
        a more complex output.
    allow_gauge_detectors: Defaults to false. When set to false, the error analysis verifies that detectors
        in the circuit are actually deterministic under noiseless execution of the circuit. When set to
        true, these detectors are instead considered to be part of degrees freedom that can be removed from
        the error model. For example, if detectors D1 and D3 both anti-commute with a reset, then the error
        model has a gauge `error(0.5) D1 D3`. When gauges are identified, one of the involved detectors is
        removed from the system using Gaussian elimination.

        Note that logical observables are still verified to be deterministic, even if this option is set.
    approximate_disjoint_errors: Defaults to false. When set to false, composite error mechanisms with
        disjoint components (such as `PAULI_CHANNEL_1(0.1, 0.2, 0.0)`) can cause the error analysis to throw
        exceptions (because detector error models can only contain independent error mechanisms). When set
        to true, the probabilities of the disjoint cases are instead assumed to be independent
        probabilities. For example, a ``PAULI_CHANNEL_1(0.1, 0.2, 0.0)` becomes equivalent to an
        `X_ERROR(0.1)` followed by a `Z_ERROR(0.2)`. This assumption is an approximation, but it is a good
        approximation for small probabilities.

        This argument can also be set to a probability between 0 and 1, setting a threshold below which the
        approximation is acceptable. Any error mechanisms that have a component probability above the
        threshold will cause an exception to be thrown.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model()
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.375) D0 D1
        error(0.25) D1
    ''')

stim.Circuit.flattened_operations(self) -> list

Flattens the circuit's operations into a list.

The operations within repeat blocks are actually repeated in the output.

Returns:
    A List[Tuple[name, targets, arg]] of the operations in the circuit.
        name: A string with the gate's name.
        targets: A list of things acted on by the gate. Each thing can be:
            int: The index of a qubit.
            Tuple["inv", int]: The index of a qubit to measure with an inverted result.
            Tuple["rec", int]: A measurement record target like `rec[-1]`.
            Tuple["X", int]: A Pauli X operation to apply during a correlated error.
            Tuple["Y", int]: A Pauli Y operation to apply during a correlated error.
            Tuple["Z", int]: A Pauli Z operation to apply during a correlated error.
        arg: The gate's numeric argument. For most gates this is just 0. For noisy
            gates this is the probability of the noise being applied.

Examples:
    >>> import stim
    >>> stim.Circuit('''
    ...    H 0
    ...    X_ERROR(0.125) 1
    ...    M 0 !1
    ... ''').flattened_operations()
    [('H', [0], 0), ('X_ERROR', [1], 0.125), ('M', [0, ('inv', 1)], 0)]

    >>> stim.Circuit('''
    ...    REPEAT 2 {
    ...        H 6
    ...    }
    ... ''').flattened_operations()
    [('H', [6], 0), ('H', [6], 0)]

stim.Circuit.generated(code_task: str, *, distance: int, rounds: int, after_clifford_depolarization: float = 0.0, before_round_data_depolarization: float = 0.0, before_measure_flip_probability: float = 0.0, after_reset_flip_probability: float = 0.0) -> stim.Circuit

Generates common circuits.

The generated circuits can include configurable noise.

The generated circuits include DETECTOR and OBSERVABLE_INCLUDE annotations so that their detection events
and logical observables can be sampled.

The generated circuits include TICK annotations to mark the progression of time. (E.g. so that converting
them using `stimcirq.stim_circuit_to_cirq_circuit` will produce a `cirq.Circuit` with the intended moment
structure.)

Args:
    code_task: A string identifying the type of circuit to generate. Available types are:
        - `repetition_code:memory`
        - `surface_code:rotated_memory_x`
        - `surface_code:rotated_memory_z`
        - `surface_code:unrotated_memory_x`
        - `surface_code:unrotated_memory_z`
        - `color_code:memory_xyz`
    distance: The desired code distance of the generated circuit. The code distance is the minimum number
        of physical errors needed to cause a logical error. This parameter indirectly determines how many
        qubits the generated circuit uses.
    rounds: How many times the measurement qubits in the generated circuit will be measured. Indirectly
        determines the duration of the generated circuit.
    after_clifford_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to add
        after every single-qubit Clifford operation and `DEPOLARIZE2(p)` operations to add after every
        two-qubit Clifford operation. The after-Clifford depolarizing operations are only included if this
        probability is not 0.
    before_round_data_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to
        apply to every data qubit at the start of a round of stabilizer measurements. The start-of-round
        depolarizing operations are only included if this probability is not 0.
    before_measure_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied
        to qubits before each measurement (X basis measurements use `Z_ERROR(p)` instead). The
        before-measurement flips are only included if this probability is not 0.
    after_reset_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied
        to qubits after each reset (X basis resets use `Z_ERROR(p)` instead). The after-reset flips are only
        included if this probability is not 0.

Returns:
    The generated circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit.generated(
    ...     "repetition_code:memory",
    ...     distance=4,
    ...     rounds=10000,
    ...     after_clifford_depolarization=0.0125)
    >>> print(circuit)
    R 0 1 2 3 4 5 6
    TICK
    CX 0 1 2 3 4 5
    DEPOLARIZE2(0.0125) 0 1 2 3 4 5
    TICK
    CX 2 1 4 3 6 5
    DEPOLARIZE2(0.0125) 2 1 4 3 6 5
    TICK
    MR 1 3 5
    DETECTOR(1, 0) rec[-3]
    DETECTOR(3, 0) rec[-2]
    DETECTOR(5, 0) rec[-1]
    REPEAT 9999 {
        TICK
        CX 0 1 2 3 4 5
        DEPOLARIZE2(0.0125) 0 1 2 3 4 5
        TICK
        CX 2 1 4 3 6 5
        DEPOLARIZE2(0.0125) 2 1 4 3 6 5
        TICK
        MR 1 3 5
        SHIFT_COORDS(0, 1)
        DETECTOR(1, 0) rec[-3] rec[-6]
        DETECTOR(3, 0) rec[-2] rec[-5]
        DETECTOR(5, 0) rec[-1] rec[-4]
    }
    M 0 2 4 6
    DETECTOR(1, 1) rec[-3] rec[-4] rec[-7]
    DETECTOR(3, 1) rec[-2] rec[-3] rec[-6]
    DETECTOR(5, 1) rec[-1] rec[-2] rec[-5]
    OBSERVABLE_INCLUDE(0) rec[-1]

stim.Circuit.num_detectors

Counts the number of bits produced when sampling the circuit's detectors.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    DETECTOR rec[-1]
    ...    REPEAT 100 {
    ...        M 0 1 2
    ...        DETECTOR rec[-1]
    ...        DETECTOR rec[-2]
    ...    }
    ... ''')
    >>> c.num_detectors
    201

stim.Circuit.num_measurements

Counts the number of bits produced when sampling the circuit's measurements.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    REPEAT 100 {
    ...        M 0 1
    ...    }
    ... ''')
    >>> c.num_measurements
    201

stim.Circuit.num_observables

Counts the number of bits produced when sampling the circuit's logical observables.

This is one more than the largest observable index given to OBSERVABLE_INCLUDE.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    OBSERVABLE_INCLUDE(2) rec[-1]
    ...    OBSERVABLE_INCLUDE(5) rec[-1]
    ... ''')
    >>> c.num_observables
    6

stim.Circuit.num_qubits

Counts the number of qubits used when simulating the circuit.

This is always one more than the largest qubit index used by the circuit.

Examples:
    >>> import stim
    >>> stim.Circuit('''
    ...    X 0
    ...    M 0 1
    ... ''').num_qubits
    2
    >>> stim.Circuit('''
    ...    X 0
    ...    M 0 1
    ...    H 100
    ... ''').num_qubits
    101

stim.Circuit.num_sweep_bits

Returns the number of sweep bits needed to completely configure the circuit.

This is always one more than the largest sweep bit index used by the circuit.

Examples:
    >>> import stim
    >>> stim.Circuit('''
    ...    CX sweep[2] 0
    ... ''').num_sweep_bits
    3
    >>> stim.Circuit('''
    ...    CZ sweep[5] 0
    ...    CX sweep[2] 0
    ... ''').num_sweep_bits
    6

stim.CircuitInstruction.__eq__(self, arg0: stim.CircuitInstruction) -> bool

Determines if two `stim.CircuitInstruction`s are identical.

stim.CircuitInstruction.__init__(self, name: str, targets: List[object], gate_args: List[float] = ()) -> None

Initializes a `stim.CircuitInstruction`.

Args:
    name: The name of the instruction being applied.
    targets: The targets the instruction is being applied to. These can be raw values like `0` and
        `stim.target_rec(-1)`, or instances of `stim.GateTarget`.
    gate_args: The sequence of numeric arguments parameterizing a gate. For noise gates this is their
        probabilities. For OBSERVABLE_INCLUDE it's the logical observable's index.

stim.CircuitInstruction.__ne__(self, arg0: stim.CircuitInstruction) -> bool

Determines if two `stim.CircuitInstruction`s are different.

stim.CircuitInstruction.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitInstruction`.

stim.CircuitInstruction.__str__(self) -> str

Returns a text description of the instruction as a stim circuit file line.

stim.CircuitInstruction.gate_args_copy(self) -> List[float]

Returns the gate's arguments (numbers parameterizing the instruction).

For noisy gates this typically a list of probabilities.
For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index.

stim.CircuitInstruction.name

The name of the instruction (e.g. `H` or `X_ERROR` or `DETECTOR`).

stim.CircuitInstruction.targets_copy(self) -> List[stim.GateTarget]

Returns a copy of the targets of the instruction.

stim.CircuitRepeatBlock.__eq__(self, arg0: stim.CircuitRepeatBlock) -> bool

Determines if two `stim.CircuitRepeatBlock`s are identical.

stim.CircuitRepeatBlock.__init__(self, repeat_count: int, body: stim.Circuit) -> None

Initializes a `stim.CircuitRepeatBlock`.

Args:
    repeat_count: The number of times to repeat the block.
    body: The body of the block, as a circuit.

stim.CircuitRepeatBlock.__ne__(self, arg0: stim.CircuitRepeatBlock) -> bool

Determines if two `stim.CircuitRepeatBlock`s are different.

stim.CircuitRepeatBlock.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitRepeatBlock`.

stim.CircuitRepeatBlock.body_copy(self) -> stim.Circuit

Returns a copy of the body of the repeat block.

The copy is forced to ensure it's clear that editing the result will not change the circuit that the repeat
block came from.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.body_copy()
    stim.Circuit('''
        CX 0 1
        CZ 1 2
    ''')

stim.CircuitRepeatBlock.repeat_count

The repetition count of the repeat block.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.repeat_count
    5

stim.CompiledDetectorSampler.__init__(self, circuit: stim.Circuit, *, seed: object = None) -> None

Creates a detector sampler, which can sample the detectors (and optionally observables) in a circuit.

Args:
    circuit: The circuit to sample from.
    seed: PARTIALLY determines simulation results by deterministically seeding the random number generator.
        Must be None or an integer in range(2**64).

        Defaults to None. When set to None, a prng seeded by system entropy is used.

        When set to an integer, making the exact same series calls on the exact same machine with the exact
        same version of Stim will produce the exact same simulation results.

        CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is
        present to make it possible to have future optimizations to the random sampling, and is enforced by
        introducing intentional differences in the seeding strategy from version to version.

        CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of
        supported SIMD instructions. For example, using the same seed on a machine that supports AVX
        instructions and one that only supports SSE instructions may produce different simulation results.

        CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For
        example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one
        call.

Returns:
    An initialized stim.CompiledDetectorSampler.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    H 0
    ...    CNOT 0 1
    ...    X_ERROR(1.0) 0
    ...    M 0 1
    ...    DETECTOR rec[-1] rec[-2]
    ... ''')
    >>> s = c.compile_detector_sampler()
    >>> s.sample(shots=1)
    array([[1]], dtype=uint8)

stim.CompiledDetectorSampler.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledDetectorSampler`.

stim.CompiledDetectorSampler.sample(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a batch of detector samples from the circuit.

The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE
instructions can also be included in the results as honorary detectors.

Args:
    shots: The number of times to sample every detector in the circuit.
    prepend_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the start of the results.
    append_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the end of the results.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, n)` where
    `n = num_detectors + num_observables*(append_observables + prepend_observables)`.
    The bit for detection event `m` in shot `s` is at `result[s, m]`.

stim.CompiledDetectorSampler.sample_bit_packed(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing bit packed batch of detector samples from the circuit.

The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE
instructions can also be included in the results as honorary detectors.

Args:
    shots: The number of times to sample every detector in the circuit.
    prepend_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the start of the results.
    append_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the end of the results.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, n)` where
    `n = num_detectors + num_observables*(append_observables + prepend_observables)`.
    The bit for detection event `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.

stim.CompiledDetectorSampler.sample_write(self, shots: int, *, filepath: str, format: str = '01', prepend_observables: bool = False, append_observables: bool = False) -> None

Samples detection events from the circuit and writes them to a file.

Examples:
    >>> import stim
    >>> import tempfile
    >>> with tempfile.TemporaryDirectory() as d:
    ...     path = f"{d}/tmp.dat"
    ...     c = stim.Circuit('''
    ...         X_ERROR(1) 0
    ...         M 0 1
    ...         DETECTOR rec[-2]
    ...         DETECTOR rec[-1]
    ...     ''')
    ...     c.compile_detector_sampler().sample_write(3, filepath=path, format="dets")
    ...     with open(path) as f:
    ...         print(f.read(), end='')
    shot D0
    shot D0
    shot D0

Args:
    shots: The number of times to sample every measurement in the circuit.
    filepath: The file to write the results to.
    format: The output format to write the results with.
        Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64".
        Defaults to "01".
    prepend_observables: Sample observables as part of each shot, and put them at the start of the detector
        data.
    append_observables: Sample observables as part of each shot, and put them at the end of the detector
        data.

Returns:
    None.

stim.CompiledMeasurementSampler.__init__(self, circuit: stim.Circuit, *, skip_reference_sample: bool = False, seed: object = None) -> None

Creates a measurement sampler for the given circuit.

The sampler uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator
during initialization of the sampler, as a baseline for deriving more samples using an error propagation
simulator.

Args:
    circuit: The stim circuit to sample from.
    skip_reference_sample: Defaults to False. When set to True, the reference sample used by the sampler is
        initialized to all-zeroes instead of being collected from the circuit. This means that the results
        returned by the sampler are actually whether or not each measurement was *flipped*, instead of true
        measurement results.

        Forcing an all-zero reference sample is useful when you are only interested in error propagation and
        don't want to have to deal with the fact that some measurements want to be On when no errors occur.
        It is also useful when you know for sure that the all-zero result is actually a possible result from
        the circuit (under noiseless execution), meaning it is a valid reference sample as good as any
        other. Computing the reference sample is the most time consuming and memory intensive part of
        simulating the circuit, so promising that the simulator can safely skip that step is an effective
        optimization.
    seed: PARTIALLY determines simulation results by deterministically seeding the random number generator.
        Must be None or an integer in range(2**64).

        Defaults to None. When set to None, a prng seeded by system entropy is used.

        When set to an integer, making the exact same series calls on the exact same machine with the exact
        same version of Stim will produce the exact same simulation results.

        CAUTION: simulation results *WILL NOT* be consistent between versions of Stim. This restriction is
        present to make it possible to have future optimizations to the random sampling, and is enforced by
        introducing intentional differences in the seeding strategy from version to version.

        CAUTION: simulation results *MAY NOT* be consistent across machines that differ in the width of
        supported SIMD instructions. For example, using the same seed on a machine that supports AVX
        instructions and one that only supports SSE instructions may produce different simulation results.

        CAUTION: simulation results *MAY NOT* be consistent if you vary how many shots are taken. For
        example, taking 10 shots and then 90 shots will give different results from taking 100 shots in one
        call.

Returns:
    An initialized stim.CompiledMeasurementSampler.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0   2 3
    ...    M 0 1 2 3
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample(shots=1)
    array([[1, 0, 1, 1]], dtype=uint8)

stim.CompiledMeasurementSampler.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledMeasurementSampler`.

stim.CompiledMeasurementSampler.sample(self, shots: int) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a batch of measurement samples from the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0   2 3
    ...    M 0 1 2 3
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample(shots=1)
    array([[1, 0, 1, 1]], dtype=uint8)

Args:
    shots: The number of times to sample every measurement in the circuit.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, num_measurements)`.
    The bit for measurement `m` in shot `s` is at `result[s, m]`.

stim.CompiledMeasurementSampler.sample_bit_packed(self, shots: int) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a bit packed batch of measurement samples from the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0 1 2 3 4 5 6 7     10
    ...    M 0 1 2 3 4 5 6 7 8 9 10
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample_bit_packed(shots=1)
    array([[255,   4]], dtype=uint8)

Args:
    shots: The number of times to sample every measurement in the circuit.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, (num_measurements + 7) // 8)`.
    The bit for measurement `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.

stim.CompiledMeasurementSampler.sample_write(self, shots: int, *, filepath: str, format: str = '01') -> None

Samples measurements from the circuit and writes them to a file.

Examples:
    >>> import stim
    >>> import tempfile
    >>> with tempfile.TemporaryDirectory() as d:
    ...     path = f"{d}/tmp.dat"
    ...     c = stim.Circuit('''
    ...         X 0   2 3
    ...         M 0 1 2 3
    ...     ''')
    ...     c.compile_sampler().sample_write(5, filepath=path, format="01")
    ...     with open(path) as f:
    ...         print(f.read(), end='')
    1011
    1011
    1011
    1011
    1011

Args:
    shots: The number of times to sample every measurement in the circuit.
    filepath: The file to write the results to.
    format: The output format to write the results with.
        Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64".
        Defaults to "01".

Returns:
    None.

stim.CompiledMeasurementsToDetectionEventsConverter.__init__(self, circuit: stim.Circuit, *, skip_reference_sample: bool = False) -> None

Creates a measurement-to-detection-events converter for the given circuit.

The converter uses a noiseless reference sample, collected from the circuit using stim's Tableau simulator
during initialization of the converter, as a baseline for determining what the expected value of a detector
is.

Note that the expected behavior of gauge detectors (detectors that are not actually deterministic under
noiseless execution) can vary depending on the reference sample. Stim mitigates this by always generating
the same reference sample for a given circuit.

Args:
    circuit: The stim circuit to use for conversions.
    skip_reference_sample: Defaults to False. When set to True, the reference sample used by the converter
        is initialized to all-zeroes instead of being collected from the circuit. This should only be used
        if it's known that the all-zeroes sample is actually a possible result from the circuit (under
        noiseless execution).

Returns:
    An initialized stim.CompiledMeasurementsToDetectionEventsConverter.

Examples:
    >>> import stim
    >>> import numpy as np
    >>> converter = stim.Circuit('''
    ...    X 0
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''').compile_m2d_converter()
    >>> converter.convert(
    ...     measurements=np.array([[0], [1]], dtype=np.bool8),
    ...     append_observables=False,
    ... )
    array([[ True],
           [False]])

stim.CompiledMeasurementsToDetectionEventsConverter.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledMeasurementsToDetectionEventsConverter`.

stim.CompiledMeasurementsToDetectionEventsConverter.convert(self, *, measurements: numpy.ndarray[bool], sweep_bits: numpy.ndarray[bool] = None, append_observables: bool) -> numpy.ndarray[bool]

Reads measurement data from a file, converts it, and writes the detection events to another file.

Args:
    measurements: A numpy array containing measurement data:
        dtype=bool8
        shape=(num_shots, circuit.num_measurements)
    sweep_bits: A numpy array containing sweep data for `sweep[k]` controls in the circuit:
        dtype=bool8
        shape=(num_shots, circuit.num_sweep_bits)
        Defaults to None (all sweep bits False).
    append_observables: When True, the observables in the circuit are included as part of the detection
        event data. Specifically, they are treated as if they were additional detectors at the end of the
        circuit. When False, observable data is not output.

Returns:
    The detection event data in a numpy array:
        dtype=bool8
        shape=(num_shots, circuit.num_detectors + circuit.num_observables * append_observables)

Examples:
    >>> import stim
    >>> import numpy as np
    >>> converter = stim.Circuit('''
    ...    X 0
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''').compile_m2d_converter()
    >>> converter.convert(
    ...     measurements=np.array([[0], [1]], dtype=np.bool8),
    ...     append_observables=False,
    ... )
    array([[ True],
           [False]])

stim.CompiledMeasurementsToDetectionEventsConverter.convert_file(self, *, measurements_filepath: str, measurements_format: str = '01', sweep_bits_filepath: str = None, sweep_bits_format: str = '01', detection_events_filepath: str, detection_events_format: str = '01', append_observables: bool) -> None

Reads measurement data from a file, converts it, and writes the detection events to another file.

Args:
    measurements_filepath: A file containing measurement data to be converted.
    measurements_format: The format the measurement data is stored in.
        Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64".
        Defaults to "01".
    detection_events_filepath: Where to save detection event data to.
    detection_events_format: The format to save the detection event data in.
        Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64".
        Defaults to "01".
    sweep_bits_filepath: Defaults to None. A file containing sweep data, or None.
        When specified, sweep data (used for `sweep[k]` controls in the circuit, which can vary from shot to
        shot) will be read from the given file.
        When not specified, all sweep bits default to False and no sweep-controlled operations occur.
    sweep_bits_format: The format the sweep data is stored in.
        Valid values are "01", "b8", "r8", "hits", "dets", and "ptb64".
        Defaults to "01".
    append_observables: When True, the observables in the circuit are included as part of the detection
        event data. Specifically, they are treated as if they were additional detectors at the end of the
        circuit. When False, observable data is not output.

Examples:
    >>> import stim
    >>> import tempfile
    >>> converter = stim.Circuit('''
    ...    X 0
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''').compile_m2d_converter()
    >>> with tempfile.TemporaryDirectory() as d:
    ...    with open(f"{d}/measurements.01", "w") as f:
    ...        print("0", file=f)
    ...        print("1", file=f)
    ...    converter.convert_file(
    ...        measurements_filepath=f"{d}/measurements.01",
    ...        detection_events_filepath=f"{d}/detections.01",
    ...        append_observables=False,
    ...    )
    ...    with open(f"{d}/detections.01", "r") as f:
    ...        print(f.read(), end="")
    1
    0

stim.DemInstruction.__eq__(self, arg0: stim.DemInstruction) -> bool

Determines if two instructions have identical contents.

stim.DemInstruction.__init__(self, type: str, args: List[float], targets: List[object]) -> None

Creates a stim.DemInstruction.

Args:
    type: The name of the instruction type (e.g. "error" or "shift_detectors").
    args: Numeric values parameterizing the instruction (e.g. the 0.1 in "error(0.1)").
    targets: The objects the instruction involves (e.g. the "D0" and "L1" in "error(0.1) D0 L1").

Examples:
    >>> import stim
    >>> instruction = stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(5)])
    >>> print(instruction)
    error(0.125) D5

stim.DemInstruction.__ne__(self, arg0: stim.DemInstruction) -> bool

Determines if two instructions have non-identical contents.

stim.DemInstruction.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`.

stim.DemInstruction.__str__(self) -> str

Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.

stim.DemInstruction.args_copy(self) -> List[float]

Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error).

stim.DemInstruction.targets_copy(self) -> List[object]

Returns a copy of the list of objects the instruction applies to (e.g. affected detectors.

stim.DemInstruction.type

The name of the instruction type (e.g. "error" or "shift_detectors").

stim.DemRepeatBlock.__eq__(self, arg0: stim.DemRepeatBlock) -> bool

Determines if two repeat blocks are identical.

stim.DemRepeatBlock.__init__(self, repeat_count: int, block: stim.DetectorErrorModel) -> None

Creates a stim.DemRepeatBlock.

Args:
    repeat_count: The number of times the repeat block's body is supposed to execute.
    body: The body of the repeat block as a DetectorErrorModel containing the instructions to repeat.

Examples:
    >>> import stim
    >>> repeat_block = stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
    ...     error(0.125) D0 D1
    ...     shift_detectors 1
    ... '''))

stim.DemRepeatBlock.__ne__(self, arg0: stim.DemRepeatBlock) -> bool

Determines if two repeat blocks are different.

stim.DemRepeatBlock.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DemRepeatBlock`.

stim.DemRepeatBlock.body_copy(self) -> stim.DetectorErrorModel

Returns a copy of the block's body, as a stim.DetectorErrorModel.

stim.DemRepeatBlock.repeat_count

The number of times the repeat block's body is supposed to execute.

stim.DemTarget.__eq__(self, arg0: stim.DemTarget) -> bool

Determines if two `stim.DemTarget`s are identical.

stim.DemTarget.__ne__(self, arg0: stim.DemTarget) -> bool

Determines if two `stim.DemTarget`s are different.

stim.DemTarget.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DemTarget`.

stim.DemTarget.__str__(self) -> str

Returns a text description of the detector error model target.

stim.DemTarget.is_logical_observable_id(self) -> bool

Determines if the detector error model target is a logical observable id target (like "L5" in a .dem file).

stim.DemTarget.is_relative_detector_id(self) -> bool

Determines if the detector error model target is a relative detector id target (like "D4" in a .dem file).

stim.DemTarget.is_separator(self) -> bool

Determines if the detector error model target is a separator (like "^" in a .dem file).

stim.DemTarget.logical_observable_id(index: int) -> stim.DemTarget

Returns a logical observable id identifying a frame change (e.g. "L5" in a .dem file).

Args:
    index: The index of the observable.

Returns:
    The logical observable target.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.DemTarget.logical_observable_id(13)
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) L13
    ''')

stim.DemTarget.relative_detector_id(index: int) -> stim.DemTarget

Returns a relative detector id (e.g. "D5" in a .dem file).

Args:
    index: The index of the detector, relative to the current detector offset.

Returns:
    The relative detector target.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.DemTarget.relative_detector_id(13)
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) D13
    ''')

stim.DemTarget.separator() -> stim.DemTarget

Returns a target separator (e.g. "^" in a .dem file).

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.25, [
    ...     stim.DemTarget.relative_detector_id(1),
    ...     stim.DemTarget.separator(),
    ...     stim.DemTarget.relative_detector_id(2),
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.25) D1 ^ D2
    ''')

stim.DemTarget.val

Returns the target's integer value.

Example:

    >>> import stim
    >>> stim.target_relative_detector_id(5).val
    5
    >>> stim.target_logical_observable_id(6).val
    6

stim.DetectorErrorModel.__add__(self, second: stim.DetectorErrorModel) -> stim.DetectorErrorModel

Creates a detector error model by appending two models.

Examples:
    >>> import stim
    >>> m1 = stim.DetectorErrorModel('''
    ...    error(0.125) D0
    ... ''')
    >>> m2 = stim.DetectorErrorModel('''
    ...    error(0.25) D1
    ... ''')
    >>> m1 + m2
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.25) D1
    ''')

stim.DetectorErrorModel.__eq__(self, arg0: stim.DetectorErrorModel) -> bool

Determines if two detector error models have identical contents.

stim.DetectorErrorModel.__getitem__(self, index_or_slice: object) -> object

Returns copies of instructions from the detector error model.

Args:
    index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range
        of instructions to return as a detector error model.

Examples:
Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...    error(0.125) D0
    ...    error(0.125) D1 L1
    ...    repeat 100 {
    ...        error(0.125) D1 D2
    ...        shift_detectors 1
    ...    }
    ...    error(0.125) D2
    ...    logical_observable L0
    ...    detector D5
    ... ''')
    >>> model[1]
    stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(1), stim.target_logical_observable_id(1)])
    >>> model[2]
    stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
        error(0.125) D1 D2
        shift_detectors 1
    '''))
    >>> model[1::2]
    stim.DetectorErrorModel('''
        error(0.125) D1 L1
        error(0.125) D2
        detector D5
    ''')

stim.DetectorErrorModel.__iadd__(self, second: stim.DetectorErrorModel) -> stim.DetectorErrorModel

Appends a detector error model into the receiving model (mutating it).

Examples:
    >>> import stim
    >>> m1 = stim.DetectorErrorModel('''
    ...    error(0.125) D0
    ... ''')
    >>> m2 = stim.DetectorErrorModel('''
    ...    error(0.25) D1
    ... ''')
    >>> m1 += m2
    >>> print(repr(m1))
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.25) D1
    ''')

stim.DetectorErrorModel.__imul__(self, repetitions: int) -> stim.DetectorErrorModel

Mutates the detector error model by putting its contents into a repeat block.

Special case: if the repetition count is 0, the model is cleared.
Special case: if the repetition count is 1, nothing happens.

Args:
    repetitions: The number of times the repeat block should repeat.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel('''
    ...    error(0.25) D0
    ...    shift_detectors 1
    ... ''')
    >>> m *= 3
    >>> print(m)
    repeat 3 {
        error(0.25) D0
        shift_detectors 1
    }

stim.DetectorErrorModel.__init__(self, detector_error_model_text: str = '') -> None

Creates a stim.DetectorErrorModel.

Args:
    detector_error_model_text: Defaults to empty. Describes instructions to append into the circuit in the
        detector error model (.dem) format.

Examples:
    >>> import stim
    >>> empty = stim.DetectorErrorModel()
    >>> not_empty = stim.DetectorErrorModel('''
    ...    error(0.125) D0 L0
    ... ''')

stim.DetectorErrorModel.__len__(self) -> int

Returns the number of top-level instructions and blocks in the detector error model.

Instructions inside of blocks are not included in this count.

Examples:
    >>> import stim
    >>> len(stim.DetectorErrorModel())
    0
    >>> len(stim.DetectorErrorModel('''
    ...    error(0.1) D0 D1
    ...    shift_detectors 100
    ...    logical_observable L5
    ... '''))
    3
    >>> len(stim.DetectorErrorModel('''
    ...    repeat 100 {
    ...        error(0.1) D0 D1
    ...        error(0.1) D1 D2
    ...    }
    ... '''))
    1

stim.DetectorErrorModel.__mul__(self, repetitions: int) -> stim.DetectorErrorModel

Returns a detector error model with a repeat block containing the current model's instructions.

Special case: if the repetition count is 0, an empty model is returned.
Special case: if the repetition count is 1, an equal model with no repeat block is returned.

Args:
    repetitions: The number of times the repeat block should repeat.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel('''
    ...    error(0.25) D0
    ...    shift_detectors 1
    ... ''')
    >>> m * 3
    stim.DetectorErrorModel('''
        repeat 3 {
            error(0.25) D0
            shift_detectors 1
        }
    ''')

stim.DetectorErrorModel.__ne__(self, arg0: stim.DetectorErrorModel) -> bool

Determines if two detector error models have non-identical contents.

stim.DetectorErrorModel.__repr__(self) -> str

"Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`."

stim.DetectorErrorModel.__rmul__(self, repetitions: int) -> stim.DetectorErrorModel

Returns a detector error model with a repeat block containing the current model's instructions.

Special case: if the repetition count is 0, an empty model is returned.
Special case: if the repetition count is 1, an equal model with no repeat block is returned.

Args:
    repetitions: The number of times the repeat block should repeat.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel('''
    ...    error(0.25) D0
    ...    shift_detectors 1
    ... ''')
    >>> 3 * m
    stim.DetectorErrorModel('''
        repeat 3 {
            error(0.25) D0
            shift_detectors 1
        }
    ''')

stim.DetectorErrorModel.__str__(self) -> str

"Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.");

stim.DetectorErrorModel.append(self, instruction: object, parens_arguments: object = None, targets: List[object] = ()) -> None

Appends an instruction to the detector error model.

Args:
    instruction: Either the name of an instruction, a stim.DemInstruction, or a stim.DemRepeatBlock.
        The `parens_arguments` and `targets` arguments are given if and only if the instruction is a name.
    parens_arguments: Numeric values parameterizing the instruction. The numbers inside parentheses in a
        detector error model file (eg. the `0.25` in `error(0.25) D0`). This argument can be given either
        a list of doubles, or a single double (which will be implicitly wrapped into a list).
    targets: The instruction targets, such as the `D0` in `error(0.25) D0`.

Examples:
    >>> import stim
    >>> m = stim.DetectorErrorModel()
    >>> m.append("error", 0.125, [
    ...     stim.DemTarget.relative_detector_id(1),
    ... ])
    >>> m.append("error", 0.25, [
    ...     stim.DemTarget.relative_detector_id(1),
    ...     stim.DemTarget.separator(),
    ...     stim.DemTarget.relative_detector_id(2),
    ...     stim.DemTarget.logical_observable_id(3),
    ... ])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.125) D1
        error(0.25) D1 ^ D2 L3
    ''')

    >>> m.append("shift_detectors", (1, 2, 3), [5])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.125) D1
        error(0.25) D1 ^ D2 L3
        shift_detectors(1, 2, 3) 5
    ''')

    >>> m += m * 3
    >>> m.append(m[0])
    >>> m.append(m[-2])
    >>> print(repr(m))
    stim.DetectorErrorModel('''
        error(0.125) D1
        error(0.25) D1 ^ D2 L3
        shift_detectors(1, 2, 3) 5
        repeat 3 {
            error(0.125) D1
            error(0.25) D1 ^ D2 L3
            shift_detectors(1, 2, 3) 5
        }
        error(0.125) D1
        repeat 3 {
            error(0.125) D1
            error(0.25) D1 ^ D2 L3
            shift_detectors(1, 2, 3) 5
        }
    ''')

stim.DetectorErrorModel.approx_equals(self, other: object, *, atol: float) -> bool

Checks if a detector error model is approximately equal to another detector error model.

Two detector error model are approximately equal if they are equal up to slight perturbations of instruction
arguments such as probabilities. For example `error(0.100) D0` is approximately equal to `error(0.099) D0`
within an absolute tolerance of 0.002. All other details of the models (such as the ordering of errors and
their targets) must be exactly the same.

Args:
    other: The detector error model, or other object, to compare to this one.
    atol: The absolute error tolerance. The maximum amount each probability may have been perturbed by.

Returns:
    True if the given object is a detector error model approximately equal up to the receiving circuit up to
    the given tolerance, otherwise False.

Examples:
    >>> import stim
    >>> base = stim.DetectorErrorModel('''
    ...    error(0.099) D0 D1
    ... ''')

    >>> base.approx_equals(base, atol=0)
    True

    >>> base.approx_equals(stim.DetectorErrorModel('''
    ...    error(0.101) D0 D1
    ... '''), atol=0)
    False

    >>> base.approx_equals(stim.DetectorErrorModel('''
    ...    error(0.101) D0 D1
    ... '''), atol=0.0001)
    False

    >>> base.approx_equals(stim.DetectorErrorModel('''
    ...    error(0.101) D0 D1
    ... '''), atol=0.01)
    True

    >>> base.approx_equals(stim.DetectorErrorModel('''
    ...    error(0.099) D0 D1 L0 L1 L2 L3 L4
    ... '''), atol=9999)
    False

stim.DetectorErrorModel.clear(self) -> None

Clears the contents of the detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...    error(0.1) D0 D1
    ... ''')
    >>> model.clear()
    >>> model
    stim.DetectorErrorModel()

stim.DetectorErrorModel.copy(self) -> stim.DetectorErrorModel

Returns a copy of the detector error model. An independent model with the same contents.

Examples:
    >>> import stim

    >>> c1 = stim.DetectorErrorModel("error(0.1) D0 D1")
    >>> c2 = c1.copy()
    >>> c2 is c1
    False
    >>> c2 == c1
    True

stim.DetectorErrorModel.num_detectors

Counts the number of detectors (e.g. `D2`) in the error model.

Detector indices are assumed to be contiguous from 0 up to whatever the maximum detector id is.
If the largest detector's absolute id is n-1, then the number of detectors is n.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model().num_detectors
    2

    >>> stim.DetectorErrorModel('''
    ...    error(0.1) D0 D199
    ... ''').num_detectors
    200

    >>> stim.DetectorErrorModel('''
    ...    shift_detectors 1000
    ...    error(0.1) D0 D199
    ... ''').num_detectors
    1200

stim.DetectorErrorModel.num_errors

Counts the number of errors (e.g. `error(0.1) D0`) in the error model.

Error instructions inside repeat blocks count once per repetition.
Redundant errors with the same targets count as separate errors.

Examples:
    >>> import stim

    >>> stim.DetectorErrorModel('''
    ...     error(0.125) D0
    ...     repeat 100 {
    ...         repeat 5 {
    ...             error(0.25) D1
    ...         }
    ...     }
    ... ''').num_errors
    501

stim.DetectorErrorModel.num_observables

Counts the number of frame changes (e.g. `L2`) in the error model.

Observable indices are assumed to be contiguous from 0 up to whatever the maximum observable id is.
If the largest observable's id is n-1, then the number of observables is n.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     M 0
    ...     OBSERVABLE_INCLUDE(99) rec[-1]
    ... ''').detector_error_model().num_observables
    100

    >>> stim.DetectorErrorModel('''
    ...    error(0.1) L399
    ... ''').num_observables
    400

stim.DetectorErrorModel.shortest_graphlike_error(self, ignore_ungraphlike_errors: bool = False) -> stim.DetectorErrorModel

Finds a minimum sized set of graphlike errors that produce an undetected logical error.

Note that this method does not pay attention to error probabilities (other than ignoring errors with
probability 0). It searches for a logical error with the minimum *number* of physical errors, not the
maximum probability of those physical errors all occurring.

This method works by looking for errors that have frame changes (eg. "error(0.1) D0 D1 L5" flips the frame
of observable 5). These errors are converted into one or two symptoms and a net frame change. The symptoms
can then be moved around by following errors touching that symptom. Each symptom is moved until it
disappears into a boundary or cancels against another remaining symptom, while leaving the other symptoms
alone (ensuring only one symptom is allowed to move significantly reduces waste in the search space).
Eventually a path or cycle of errors is found that cancels out the symptoms, and if there is still a frame
change at that point then that path or cycle is a logical error (otherwise all that was found was a
stabilizer of the system; a dead end). The search process advances like a breadth first search, seeded from
all the frame-change errors and branching them outward in tandem, until one of them wins the race to find a
solution.

Args:
    ignore_ungraphlike_errors: Defaults to False. When False, an exception is raised if there are any
        errors in the model that are not graphlike. When True, those errors are skipped as if they weren't
        present.

        A graphlike error is an error with at most two symptoms per decomposed component.
            graphlike:
                error(0.1) D0
                error(0.1) D0 D1
                error(0.1) D0 D1 L0
                error(0.1) D0 D1 ^ D2
            not graphlike:
                error(0.1) D0 D1 D2
                error(0.1) D0 D1 D2 ^ D3

Returns:
    A detector error model containing just the error instructions corresponding to an undetectable logical
    error. There will be no other kinds of instructions (no `repeat`s, no `shift_detectors`, etc).
    The error probabilities will all be set to 1.

    The `len` of the returned model is the graphlike code distance of the circuit. But beware that in
    general the true code distance may be smaller. For example, in the XZ surface code with twists, the true
    minimum sized logical error is likely to use Y errors. But each Y error decomposes into two graphlike
    components (the X part and the Z part). As a result, the graphlike code distance in that context is
    likely to be nearly twice as large as the true code distance.

Examples:
    >>> import stim

    >>> stim.DetectorErrorModel("""
    ...     error(0.125) D0
    ...     error(0.125) D0 D1
    ...     error(0.125) D1 L55
    ...     error(0.125) D1
    ... """).shortest_graphlike_error()
    stim.DetectorErrorModel('''
        error(1) D1
        error(1) D1 L55
    ''')

    >>> stim.DetectorErrorModel("""
    ...     error(0.125) D0 D1 D2
    ...     error(0.125) L0
    ... """).shortest_graphlike_error(ignore_ungraphlike_errors=True)
    stim.DetectorErrorModel('''
        error(1) L0
    ''')

    >>> circuit = stim.Circuit.generated(
    ...     "repetition_code:memory",
    ...     rounds=10,
    ...     distance=7,
    ...     before_round_data_depolarization=0.01)
    >>> model = circuit.detector_error_model(decompose_errors=True)
    >>> len(model.shortest_graphlike_error())
    7

stim.GateTarget.__eq__(self, arg0: stim.GateTarget) -> bool

Determines if two `stim.GateTarget`s are identical.

stim.GateTarget.__init__(self, value: object) -> None

Initializes a `stim.GateTarget`.

Args:
    value: A target like `5` or `stim.target_rec(-1)`.

stim.GateTarget.__ne__(self, arg0: stim.GateTarget) -> bool

Determines if two `stim.GateTarget`s are different.

stim.GateTarget.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.GateTarget`.

stim.GateTarget.is_combiner

Returns whether or not this is a `stim.target_combiner()` (a `*` in a circuit file).

stim.GateTarget.is_inverted_result_target

Returns whether or not this is an inverted target.

Inverted targets include inverted qubit targets `stim.target_inv(5)` (`!5` in a circuit file) and
inverted Pauli targets like `stim.target_x(4, invert=True)` (`!X4` in a circuit file).

stim.GateTarget.is_measurement_record_target

Returns whether or not this is a `stim.target_rec` target (e.g. `rec[-5]` in a circuit file).

stim.GateTarget.is_qubit_target

Returns true if this is a qubit target (e.g. `5`) or an inverted qubit target (e.g. `stim.target_inv(4)`).

stim.GateTarget.is_sweep_bit_target

Returns whether or not this is a `stim.target_sweep_bit` target (e.g. `sweep[5]` in a circuit file).

stim.GateTarget.is_x_target

Returns whether or not this is a `stim.target_x` target (e.g. `X5` in a circuit file).

stim.GateTarget.is_y_target

Returns whether or not this is a `stim.target_y` target (e.g. `Y5` in a circuit file).

stim.GateTarget.is_z_target

Returns whether or not this is a `stim.target_z` target (e.g. `Z5` in a circuit file).

stim.GateTarget.value

The numeric part of the target. Positive for qubit targets, negative for measurement record targets.

stim.PauliString.__add__(self, rhs: stim.PauliString) -> stim.PauliString

Returns the tensor product of two Pauli strings.

Concatenates the Pauli strings and multiplies their signs.

Args:
    rhs: A second stim.PauliString.

Examples:
    >>> import stim

    >>> stim.PauliString("X") + stim.PauliString("YZ")
    stim.PauliString("+XYZ")

    >>> stim.PauliString("iX") + stim.PauliString("-X")
    stim.PauliString("-iXX")

Returns:
    The tensor product.

stim.PauliString.__eq__(self, arg0: stim.PauliString) -> bool

Determines if two Pauli strings have identical contents.

stim.PauliString.__getitem__(self, index_or_slice: object) -> object

Returns an individual Pauli or Pauli string slice from the pauli string.

Individual Paulis are returned as an int using the encoding 0=I, 1=X, 2=Y, 3=Z.
Slices are returned as a stim.PauliString (always with positive sign).

Examples:
    >>> import stim
    >>> p = stim.PauliString("_XYZ")
    >>> p[2]
    2
    >>> p[-1]
    3
    >>> p[:2]
    stim.PauliString("+_X")
    >>> p[::-1]
    stim.PauliString("+ZYX_")

Args:
    index_or_slice: The index of the pauli to return, or the slice of paulis to return.

Returns:
    0: Identity.
    1: Pauli X.
    2: Pauli Y.
    3: Pauli Z.

stim.PauliString.__iadd__(self, rhs: stim.PauliString) -> stim.PauliString

Performs an inplace tensor product.

Concatenates the given Pauli string onto the receiving string and multiplies their signs.

Args:
    rhs: A second stim.PauliString.

Examples:
    >>> import stim

    >>> p = stim.PauliString("iX")
    >>> alias = p
    >>> p += stim.PauliString("-YY")
    >>> p
    stim.PauliString("-iXYY")
    >>> alias is p
    True

Returns:
    The mutated pauli string.

stim.PauliString.__imul__(self, rhs: object) -> stim.PauliString

Inplace right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The right hand side of the multiplication. This can be:
        - A stim.PauliString to right-multiply term-by-term into the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> p = stim.PauliString("X")
    >>> p *= 1j
    >>> p
    stim.PauliString("+iX")

    >>> p = stim.PauliString("iXY_")
    >>> p *= 3
    >>> p
    stim.PauliString("-iXY_XY_XY_")

    >>> p = stim.PauliString("X")
    >>> alias = p
    >>> p *= stim.PauliString("Y")
    >>> alias
    stim.PauliString("+iZ")

    >>> p = stim.PauliString("X")
    >>> p *= stim.PauliString("_YY")
    >>> p
    stim.PauliString("+XYY")

Returns:
    The mutated Pauli string.

Raises:
    ValueError: The Pauli strings have different lengths.

stim.PauliString.__init__(*args, **kwargs)

Overloaded function.

1. __init__(self: stim.PauliString, num_qubits: int) -> None

Creates an identity Pauli string over the given number of qubits.

Examples:
    >>> import stim
    >>> p = stim.PauliString(5)
    >>> print(p)
    +_____

Args:
    num_qubits: The number of qubits the Pauli string acts on.


2. __init__(self: stim.PauliString, text: str) -> None

Creates a stim.PauliString from a text string.

The string can optionally start with a sign ('+', '-', 'i', '+i', or '-i').
The rest of the string should be characters from '_IXYZ' where
'_' and 'I' mean identity, 'X' means Pauli X, 'Y' means Pauli Y, and 'Z' means Pauli Z.

Examples:
    >>> import stim
    >>> print(stim.PauliString("YZ"))
    +YZ
    >>> print(stim.PauliString("+IXYZ"))
    +_XYZ
    >>> print(stim.PauliString("-___X_"))
    -___X_
    >>> print(stim.PauliString("iX"))
    +iX

Args:
    text: A text description of the Pauli string's contents, such as "+XXX" or "-_YX".


3. __init__(self: stim.PauliString, copy: stim.PauliString) -> None

Creates a copy of a stim.PauliString.

Examples:
    >>> import stim
    >>> a = stim.PauliString("YZ")
    >>> b = stim.PauliString(a)
    >>> b is a
    False
    >>> b == a
    True

Args:
    copy: The pauli string to make a copy of.


4. __init__(self: stim.PauliString, pauli_indices: List[int]) -> None

Creates a stim.PauliString from a list of integer pauli indices.

The indexing scheme that is used is:
    0 -> I
    1 -> X
    2 -> Y
    3 -> Z

Examples:
    >>> import stim
    >>> stim.PauliString([0, 1, 2, 3, 0, 3])
    stim.PauliString("+_XYZ_Z")

Args:
    pauli_indices: A sequence of integers from 0 to 3 (inclusive) indicating paulis.

stim.PauliString.__itruediv__(self, rhs: complex) -> stim.PauliString

Inplace divides the Pauli string by a complex unit.

Args:
    rhs: The divisor. Can be 1, -1, 1j, or -1j.

Examples:
    >>> import stim

    >>> p = stim.PauliString("X")
    >>> p /= 1j
    >>> p
    stim.PauliString("-iX")

Returns:
    The mutated Pauli string.

Raises:
    ValueError: The divisor isn't 1, -1, 1j, or -1j.

stim.PauliString.__len__(self) -> int

Returns the length the pauli string; the number of qubits it operates on.

stim.PauliString.__mul__(self, rhs: object) -> stim.PauliString

Right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The right hand side of the multiplication. This can be:
        - A stim.PauliString to right-multiply term-by-term with the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply with the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> stim.PauliString("X") * 1
    stim.PauliString("+X")
    >>> stim.PauliString("X") * -1
    stim.PauliString("-X")
    >>> stim.PauliString("X") * 1j
    stim.PauliString("+iX")

    >>> stim.PauliString("X") * 2
    stim.PauliString("+XX")
    >>> stim.PauliString("-X") * 2
    stim.PauliString("+XX")
    >>> stim.PauliString("iX") * 2
    stim.PauliString("-XX")
    >>> stim.PauliString("X") * 3
    stim.PauliString("+XXX")
    >>> stim.PauliString("iX") * 3
    stim.PauliString("-iXXX")

    >>> stim.PauliString("X") * stim.PauliString("Y")
    stim.PauliString("+iZ")
    >>> stim.PauliString("X") * stim.PauliString("XX_")
    stim.PauliString("+_X_")
    >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ")
    stim.PauliString("+X_ZY")

Returns:
    The product or tensor power.

Raises:
    TypeError: The right hand side isn't a stim.PauliString, a non-negative integer, or a complex unit (1, -1, 1j, or -1j).

stim.PauliString.__ne__(self, arg0: stim.PauliString) -> bool

Determines if two Pauli strings have non-identical contents.

stim.PauliString.__neg__(self) -> stim.PauliString

Returns the negation of the pauli string.

Examples:
    >>> import stim
    >>> -stim.PauliString("X")
    stim.PauliString("-X")
    >>> -stim.PauliString("-Y")
    stim.PauliString("+Y")
    >>> -stim.PauliString("iZZZ")
    stim.PauliString("-iZZZ")

stim.PauliString.__pos__(self) -> stim.PauliString

Returns a pauli string with the same contents.

Examples:
    >>> import stim
    >>> +stim.PauliString("+X")
    stim.PauliString("+X")
    >>> +stim.PauliString("-YY")
    stim.PauliString("-YY")
    >>> +stim.PauliString("iZZZ")
    stim.PauliString("+iZZZ")

stim.PauliString.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.PauliString`.

stim.PauliString.__rmul__(self, lhs: object) -> stim.PauliString

Left-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The left hand side of the multiplication. This can be:
        - A stim.PauliString to left-multiply term-by-term into the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> 1 * stim.PauliString("X")
    stim.PauliString("+X")
    >>> -1 * stim.PauliString("X")
    stim.PauliString("-X")
    >>> 1j * stim.PauliString("X")
    stim.PauliString("+iX")

    >>> 2 * stim.PauliString("X")
    stim.PauliString("+XX")
    >>> 2 * stim.PauliString("-X")
    stim.PauliString("+XX")
    >>> 2 * stim.PauliString("iX")
    stim.PauliString("-XX")
    >>> 3 * stim.PauliString("X")
    stim.PauliString("+XXX")
    >>> 3 * stim.PauliString("iX")
    stim.PauliString("-iXXX")

    >>> stim.PauliString("X") * stim.PauliString("Y")
    stim.PauliString("+iZ")
    >>> stim.PauliString("X") * stim.PauliString("XX_")
    stim.PauliString("+_X_")
    >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ")
    stim.PauliString("+X_ZY")

Returns:
    The product.

Raises:
    ValueError: The scalar phase factor isn't 1, -1, 1j, or -1j.

stim.PauliString.__setitem__(self, index: int, new_pauli: object) -> None

Mutates an entry in the pauli string using the encoding 0=I, 1=X, 2=Y, 3=Z.

Args:
    index: The index of the pauli to overwrite.
    new_pauli: Either a character from '_IXYZ' or an integer from range(4).

Examples:
    >>> import stim
    >>> p = stim.PauliString(4)
    >>> p[2] = 1
    >>> print(p)
    +__X_
    >>> p[0] = 3
    >>> p[1] = 2
    >>> p[3] = 0
    >>> print(p)
    +ZYX_
    >>> p[0] = 'I'
    >>> p[1] = 'X'
    >>> p[2] = 'Y'
    >>> p[3] = 'Z'
    >>> print(p)
    +_XYZ
    >>> p[-1] = 'Y'
    >>> print(p)
    +_XYY

stim.PauliString.__str__(self) -> str

Returns a text description.

stim.PauliString.__truediv__(self, rhs: complex) -> stim.PauliString

Divides the Pauli string by a complex unit.

Args:
    rhs: The divisor. Can be 1, -1, 1j, or -1j.

Examples:
    >>> import stim

    >>> stim.PauliString("X") / 1j
    stim.PauliString("-iX")

Returns:
    The quotient.

Raises:
    ValueError: The divisor isn't 1, -1, 1j, or -1j.

stim.PauliString.commutes(self, other: stim.PauliString) -> bool

Determines if two Pauli strings commute or not.

Two Pauli strings commute if they have an even number of matched
non-equal non-identity Pauli terms. Otherwise they anticommute.

Args:
    other: The other Pauli string.

Examples:
    >>> import stim
    >>> xx = stim.PauliString("XX")
    >>> xx.commutes(stim.PauliString("X_"))
    True
    >>> xx.commutes(stim.PauliString("XX"))
    True
    >>> xx.commutes(stim.PauliString("XY"))
    False
    >>> xx.commutes(stim.PauliString("XZ"))
    False
    >>> xx.commutes(stim.PauliString("ZZ"))
    True
    >>> xx.commutes(stim.PauliString("X_Y__"))
    True
    >>> xx.commutes(stim.PauliString(""))
    True

Returns:
    True if the Pauli strings commute, False if they anti-commute.

stim.PauliString.copy(self) -> stim.PauliString

Returns a copy of the pauli string. An independent pauli string with the same contents.

Examples:
    >>> import stim
    >>> p1 = stim.PauliString.random(2)
    >>> p2 = p1.copy()
    >>> p2 is p1
    False
    >>> p2 == p1
    True

stim.PauliString.extended_product(self, other: stim.PauliString) -> Tuple[complex, stim.PauliString]

[DEPRECATED] Use multiplication (__mul__ or *) instead.

stim.PauliString.random(num_qubits: int, *, allow_imaginary: bool = False) -> stim.PauliString

Samples a uniformly random Hermitian Pauli string over the given number of qubits.

Args:
    num_qubits: The number of qubits the Pauli string should act on.
    allow_imaginary: Defaults to False. If True, the sign of the result may be 1j or -1j
        in addition to +1 or -1. In other words, setting this to True allows the result
        to be non-Hermitian.

Examples:
    >>> import stim
    >>> p = stim.PauliString.random(5)
    >>> len(p)
    5
    >>> p.sign in [-1, +1]
    True

    >>> p2 = stim.PauliString.random(3, allow_imaginary=True)
    >>> len(p2)
    3
    >>> p2.sign in [-1, +1, 1j, -1j]
    True

Returns:
    The sampled Pauli string.

stim.PauliString.sign

The sign of the Pauli string. Can be +1, -1, 1j, or -1j.

Examples:
    >>> import stim
    >>> stim.PauliString("X").sign
    (1+0j)
    >>> stim.PauliString("-X").sign
    (-1+0j)
    >>> stim.PauliString("iX").sign
    1j
    >>> stim.PauliString("-iX").sign
    (-0-1j)

stim.Tableau.__add__(self, rhs: stim.Tableau) -> stim.Tableau

Returns the direct sum (diagonal concatenation) of two Tableaus.

Args:
    rhs: A second stim.Tableau.

Examples:
    >>> import stim

    >>> s = stim.Tableau.from_named_gate("S")
    >>> cz = stim.Tableau.from_named_gate("CZ")
    >>> print(s + cz)
    +-xz-xz-xz-
    | ++ ++ ++
    | YZ __ __
    | __ XZ Z_
    | __ Z_ XZ

Returns:
    The direct sum.

stim.Tableau.__call__(self, pauli_string: stim.PauliString) -> stim.PauliString

Returns the result of conjugating the given PauliString by the Tableau's Clifford operation.

Args:
    pauli_string: The pauli string to conjugate.

Returns:
    The new conjugated pauli string.

Examples:
    >>> import stim
    >>> t = stim.Tableau.from_named_gate("CNOT")
    >>> p = stim.PauliString("XX")
    >>> result = t(p)
    >>> print(result)
    +X_

stim.Tableau.__eq__(self, arg0: stim.Tableau) -> bool

Determines if two tableaus have identical contents.

stim.Tableau.__iadd__(self, rhs: stim.Tableau) -> stim.Tableau

Performs an inplace direct sum (diagonal concatenation).

Args:
    rhs: A second stim.Tableau.

Examples:
    >>> import stim

    >>> s = stim.Tableau.from_named_gate("S")
    >>> cz = stim.Tableau.from_named_gate("CZ")
    >>> alias = s
    >>> s += cz
    >>> alias is s
    True
    >>> print(s)
    +-xz-xz-xz-
    | ++ ++ ++
    | YZ __ __
    | __ XZ Z_
    | __ Z_ XZ

Returns:
    The mutated tableau.

stim.Tableau.__init__(self, num_qubits: int) -> None

Creates an identity tableau over the given number of qubits.

Examples:
    >>> import stim
    >>> t = stim.Tableau(3)
    >>> print(t)
    +-xz-xz-xz-
    | ++ ++ ++
    | XZ __ __
    | __ XZ __
    | __ __ XZ

Args:
    num_qubits: The number of qubits the tableau's operation acts on.

stim.Tableau.__len__(self) -> int

Returns the number of qubits operated on by the tableau.

stim.Tableau.__mul__(self, rhs: stim.Tableau) -> stim.Tableau

Returns the product of two tableaus.

If the tableau T1 represents the Clifford operation with unitary C1,
and the tableau T2 represents the Clifford operation with unitary C2,
then the tableau T1*T2 represents the Clifford operation with unitary C1*C2.

Args:
    rhs: The tableau  on the right hand side of the multiplication.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(4)
    >>> t2 = stim.Tableau.random(4)
    >>> t3 = t2 * t1
    >>> p = stim.PauliString.random(4)
    >>> t3(p) == t2(t1(p))
    True

stim.Tableau.__ne__(self, arg0: stim.Tableau) -> bool

Determines if two tableaus have non-identical contents.

stim.Tableau.__pow__(self, exponent: int) -> stim.Tableau

Raises the tableau to an integer power.

Large powers are reached efficiently using repeated squaring.
Negative powers are reached by inverting the tableau.

Args:
    exponent: The power to raise to. Can be negative, zero, or positive.

Examples:
    >>> import stim
    >>> s = stim.Tableau.from_named_gate("S")
    >>> s**0 == stim.Tableau(1)
    True
    >>> s**1 == s
    True
    >>> s**2 == stim.Tableau.from_named_gate("Z")
    True
    >>> s**-1 == s**3 == stim.Tableau.from_named_gate("S_DAG")
    True
    >>> s**5 == s
    True
    >>> s**(400000000 + 1) == s
    True
    >>> s**(-400000000 + 1) == s
    True

stim.Tableau.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.Tableau`.

stim.Tableau.__str__(self) -> str

Returns a text description.

stim.Tableau.append(self, gate: stim.Tableau, targets: List[int]) -> None

Appends an operation's effect into this tableau, mutating this tableau.

Time cost is O(n*m*m) where n=len(self) and m=len(gate).

Args:
    gate: The tableau of the operation being appended into this tableau.
    targets: The qubits being targeted by the gate.

Examples:
    >>> import stim
    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> t = stim.Tableau(2)
    >>> t.append(cnot, [0, 1])
    >>> t.append(cnot, [1, 0])
    >>> t.append(cnot, [0, 1])
    >>> t == stim.Tableau.from_named_gate("SWAP")
    True

stim.Tableau.copy(self) -> stim.Tableau

Returns a copy of the tableau. An independent tableau with the same contents.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(2)
    >>> t2 = t1.copy()
    >>> t2 is t1
    False
    >>> t2 == t1
    True

stim.Tableau.from_conjugated_generators(*, xs: List[stim.PauliString], zs: List[stim.PauliString]) -> stim.Tableau

Creates a tableau from the given outputs for each generator.

Verifies that the tableau is well formed.

Args:
    xs: A List[stim.PauliString] with the results of conjugating X0, X1, etc.
    zs: A List[stim.PauliString] with the results of conjugating Z0, Z1, etc.

Returns:
    The created tableau.

Raises:
    ValueError: The given outputs are malformed. Their lengths are inconsistent,
        or they don't satisfy the required commutation relationships.

Examples:
    >>> import stim
    >>> identity3 = stim.Tableau.from_conjugated_generators(
    ...     xs=[
    ...         stim.PauliString("X__"),
    ...         stim.PauliString("_X_"),
    ...         stim.PauliString("__X"),
    ...     ],
    ...     zs=[
    ...         stim.PauliString("Z__"),
    ...         stim.PauliString("_Z_"),
    ...         stim.PauliString("__Z"),
    ...     ],
    ... )
    >>> identity3 == stim.Tableau(3)
    True

stim.Tableau.from_named_gate(name: str) -> stim.Tableau

Returns the tableau of a named Clifford gate.

Args:
    name: The name of the Clifford gate.

Returns:
    The gate's tableau.

Examples:
    >>> import stim
    >>> print(stim.Tableau.from_named_gate("H"))
    +-xz-
    | ++
    | ZX
    >>> print(stim.Tableau.from_named_gate("CNOT"))
    +-xz-xz-
    | ++ ++
    | XZ _Z
    | X_ XZ
    >>> print(stim.Tableau.from_named_gate("S"))
    +-xz-
    | ++
    | YZ

stim.Tableau.inverse(self, *, unsigned: bool = False) -> stim.Tableau

Computes the inverse of the tableau.

The inverse T^-1 of a tableau T is the unique tableau with the property that T * T^-1 = T^-1 * T = I where
I is the identity tableau.

Args:
    unsigned: Defaults to false. When set to true, skips computing the signs of the output observables and
        instead just set them all to be positive. This is beneficial because computing the signs takes
        O(n^3) time and the rest of the inverse computation is O(n^2) where n is the number of qubits in the
        tableau. So, if you only need the Pauli terms (not the signs), it is significantly cheaper.

Returns:
    The inverse tableau.

Examples:
    >>> import stim

    >>> # Check that the inverse agrees with hard-coded tableaus in the gate data.
    >>> s = stim.Tableau.from_named_gate("S")
    >>> s_dag = stim.Tableau.from_named_gate("S_DAG")
    >>> s.inverse() == s_dag
    True
    >>> z = stim.Tableau.from_named_gate("Z")
    >>> z.inverse() == z
    True

    >>> # Check that multiplying by the inverse produces the identity.
    >>> t = stim.Tableau.random(10)
    >>> t_inv = t.inverse()
    >>> identity = stim.Tableau(10)
    >>> t * t_inv == t_inv * t == identity
    True

    >>> # Check a manual case.
    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-__Z"), stim.PauliString("+XZ_"), stim.PauliString("+_ZZ")],
    ...     zs=[stim.PauliString("-YYY"), stim.PauliString("+Z_Z"), stim.PauliString("-ZYZ")],
    ... )
    >>> print(t.inverse())
    +-xz-xz-xz-
    | -- +- --
    | XX XX YX
    | XZ Z_ X_
    | X_ YX Y_
    >>> print(t.inverse(unsigned=True))
    +-xz-xz-xz-
    | ++ ++ ++
    | XX XX YX
    | XZ Z_ X_
    | X_ YX Y_

stim.Tableau.inverse_x_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating an X Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).x_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the X generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating an X generator by the inverse of the tableau.

Examples:
    >>> import stim

    # Check equivalence with the inverse's x_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().x_output(0)
    >>> t.inverse_x_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_x_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_x_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input X generator.

A constant-time equivalent for `tableau.inverse().x_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input X generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_x_output_pauli(0, 0)
    2
    >>> t_inv.inverse_x_output_pauli(0, 1)
    0
    >>> t_inv.inverse_x_output_pauli(1, 0)
    2
    >>> t_inv.inverse_x_output_pauli(1, 1)
    3

stim.Tableau.inverse_y_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating a Y Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).y_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the Y generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating a Y generator by the inverse of the tableau.

Examples:
    >>> import stim

    # Check equivalence with the inverse's y_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().y_output(0)
    >>> t.inverse_y_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_y_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_y_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input Y generator.

A constant-time equivalent for `tableau.inverse().y_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input Y generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_y_output_pauli(0, 0)
    1
    >>> t_inv.inverse_y_output_pauli(0, 1)
    2
    >>> t_inv.inverse_y_output_pauli(1, 0)
    0
    >>> t_inv.inverse_y_output_pauli(1, 1)
    2

stim.Tableau.inverse_z_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating a Z Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).z_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the Z generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating a Z generator by the inverse of the tableau.

Examples:
    >>> import stim

    >>> import stim

    # Check equivalence with the inverse's z_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().z_output(0)
    >>> t.inverse_z_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_z_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_z_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input Z generator.

A constant-time equivalent for `tableau.inverse().z_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input Z generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_z_output_pauli(0, 0)
    3
    >>> t_inv.inverse_z_output_pauli(0, 1)
    2
    >>> t_inv.inverse_z_output_pauli(1, 0)
    2
    >>> t_inv.inverse_z_output_pauli(1, 1)
    1

stim.Tableau.prepend(self, gate: stim.Tableau, targets: List[int]) -> None

Prepends an operation's effect into this tableau, mutating this tableau.

Time cost is O(n*m*m) where n=len(self) and m=len(gate).

Args:
    gate: The tableau of the operation being prepended into this tableau.
    targets: The qubits being targeted by the gate.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> t = stim.Tableau.from_named_gate("H")
    >>> t.prepend(stim.Tableau.from_named_gate("X"), [0])
    >>> t == stim.Tableau.from_named_gate("SQRT_Y_DAG")
    True

stim.Tableau.random(num_qubits: int) -> stim.Tableau

Samples a uniformly random Clifford operation over the given number of qubits and returns its tableau.

Args:
    num_qubits: The number of qubits the tableau should act on.

Returns:
    The sampled tableau.

Examples:
    >>> import stim
    >>> t = stim.Tableau.random(42)

References:
    "Hadamard-free circuits expose the structure of the Clifford group"
    Sergey Bravyi, Dmitri Maslov
    https://arxiv.org/abs/2003.09412

stim.Tableau.then(self, second: stim.Tableau) -> stim.Tableau

Returns the result of composing two tableaus.

If the tableau T1 represents the Clifford operation with unitary C1,
and the tableau T2 represents the Clifford operation with unitary C2,
then the tableau T1.then(T2) represents the Clifford operation with unitary C2*C1.

Args:
    second: The result is equivalent to applying the second tableau after
        the receiving tableau.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(4)
    >>> t2 = stim.Tableau.random(4)
    >>> t3 = t1.then(t2)
    >>> p = stim.PauliString.random(4)
    >>> t3(p) == t2(t1(p))
    True

stim.Tableau.x_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli X by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli X operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.x_output(0)
    stim.PauliString("+Z")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.x_output(0)
    stim.PauliString("+XX")
    >>> cnot.x_output(1)
    stim.PauliString("+_X")

stim.Tableau.x_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input X generator.

A constant-time equivalent for `tableau.x_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input X generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.x_output_pauli(0, 0)
    2
    >>> t.x_output_pauli(0, 1)
    0
    >>> t.x_output_pauli(1, 0)
    2
    >>> t.x_output_pauli(1, 1)
    3

stim.Tableau.y_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli Y by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli Y operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.y_output(0)
    stim.PauliString("-Y")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.y_output(0)
    stim.PauliString("+YX")
    >>> cnot.y_output(1)
    stim.PauliString("+ZY")

stim.Tableau.y_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input Y generator.

A constant-time equivalent for `tableau.y_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input Y generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.y_output_pauli(0, 0)
    1
    >>> t.y_output_pauli(0, 1)
    2
    >>> t.y_output_pauli(1, 0)
    0
    >>> t.y_output_pauli(1, 1)
    2

stim.Tableau.z_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli Z by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli Z operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.z_output(0)
    stim.PauliString("+X")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.z_output(0)
    stim.PauliString("+Z_")
    >>> cnot.z_output(1)
    stim.PauliString("+ZZ")

stim.Tableau.z_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input Z generator.

A constant-time equivalent for `tableau.z_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input Z generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.z_output_pauli(0, 0)
    3
    >>> t.z_output_pauli(0, 1)
    2
    >>> t.z_output_pauli(1, 0)
    2
    >>> t.z_output_pauli(1, 1)
    1

stim.TableauSimulator.canonical_stabilizers(self) -> List[stim.PauliString]

Returns a list of the stabilizers of the simulator's current state in a standard form.

Two simulators have the same canonical stabilizers if and only if their current quantum state is equal
(and tracking the same number of qubits).

The canonical form is computed as follows:

    1. Get a list of stabilizers using the `z_output`s of `simulator.current_inverse_tableau()**-1`.
    2. Perform Gaussian elimination on each generator g (ordered X0, Z0, X1, Z1, X2, Z2, etc).
        2a) Pick any stabilizer that uses the generator g. If there are none, go to the next g.
        2b) Multiply that stabilizer into all other stabilizers that use the generator g.
        2c) Swap that stabilizer with the stabilizer at position `next_output` then increment `next_output`.

Returns:
    A List[stim.PauliString] of the simulator's state's stabilizers.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.x(2)
    >>> s.canonical_stabilizers()
    [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")]

    >>> # Scramble the stabilizers then check that the canonical form is unchanged.
    >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1)
    >>> s.cnot(0, 1)
    >>> s.cz(0, 2)
    >>> s.s(0, 2)
    >>> s.cy(2, 1)
    >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1)
    >>> s.canonical_stabilizers()
    [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")]

stim.TableauSimulator.cnot(self, *args) -> None

Applies a controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.copy(self) -> stim.TableauSimulator

Returns a copy of the simulator. A simulator with the same internal state.

Examples:
    >>> import stim

    >>> s1 = stim.TableauSimulator()
    >>> s1.set_inverse_tableau(stim.Tableau.random(1))
    >>> s2 = s1.copy()
    >>> s2 is s1
    False
    >>> s2.current_inverse_tableau() == s1.current_inverse_tableau()
    True

    >>> s = stim.TableauSimulator()
    >>> def brute_force_post_select(qubit, desired_result):
    ...     global s
    ...     while True:
    ...         copy = s.copy()
    ...         if copy.measure(qubit) == desired_result:
    ...             s = copy
    ...             break
    >>> s.h(0)
    >>> brute_force_post_select(qubit=0, desired_result=True)
    >>> s.measure(0)
    True

stim.TableauSimulator.current_inverse_tableau(self) -> stim.Tableau

Returns a copy of the internal state of the simulator as a stim.Tableau.

Returns:
    A stim.Tableau copy of the simulator's state.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+Z"),
        ],
        zs=[
            stim.PauliString("+X"),
        ],
    )
    >>> s.cnot(0, 1)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+ZX"),
            stim.PauliString("+_X"),
        ],
        zs=[
            stim.PauliString("+X_"),
            stim.PauliString("+XZ"),
        ],
    )

stim.TableauSimulator.current_measurement_record(self) -> List[bool]

Returns a copy of the record of all measurements performed by the simulator.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.current_measurement_record()
    []
    >>> s.measure(0)
    False
    >>> s.x(0)
    >>> s.measure(0)
    True
    >>> s.current_measurement_record()
    [False, True]
    >>> s.do(stim.Circuit("M 0"))
    >>> s.current_measurement_record()
    [False, True, True]

Returns:
    A list of booleans containing the result of every measurement performed by the simulator so far.

stim.TableauSimulator.cy(self, *args) -> None

Applies a controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.cz(self, *args) -> None

Applies a controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.do(*args, **kwargs)

Overloaded function.

1. do(self: stim.TableauSimulator, circuit: stim.Circuit) -> None

Applies all the operations in the given stim.Circuit to the simulator's state.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.do(stim.Circuit('''
    ...     X 0
    ...     M 0
    ... '''))
    >>> s.current_measurement_record()
    [True]

Args:
    circuit: A stim.Circuit containing operations to apply.


2. do(self: stim.TableauSimulator, pauli_string: stim.PauliString) -> None

Applies all the Pauli operations in the given stim.PauliString to the simulator's state.

The Pauli at offset k is applied to the qubit with index k.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.do(stim.PauliString("IXYZ"))
    >>> s.measure_many(0, 1, 2, 3)
    [False, True, True, False]

Args:
    pauli_string: A stim.PauliString containing Pauli operations to apply.

stim.TableauSimulator.h(self, *args) -> None

Applies a Hadamard gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.h_xy(self, *args) -> None

Applies a variant of the Hadamard gate that swaps the X and Y axes to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.h_yz(self, *args) -> None

Applies a variant of the Hadamard gate that swaps the Y and Z axes to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.iswap(self, *args) -> None

Applies an ISWAP gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.iswap_dag(self, *args) -> None

Applies an ISWAP_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.measure(self, target: int) -> bool

Measures a single qubit.

Unlike the other methods on TableauSimulator, this one does not broadcast
over multiple targets. This is to avoid returning a list, which would
create a pitfall where typing `if sim.measure(qubit)` would be a bug.

To measure multiple qubits, use `TableauSimulator.measure_many`.

Args:
    target: The index of the qubit to measure.

Returns:
    The measurement result as a bool.

stim.TableauSimulator.measure_kickback(self, target: int) -> tuple

Measures a qubit and returns the result as well as its Pauli kickback (if any).

The "Pauli kickback" of a stabilizer circuit measurement is a set of Pauli operations that
flip the post-measurement system state between the two possible post-measurement states.
For example, consider measuring one of the qubits in the state |00>+|11> in the Z basis.
If the measurement result is False, then the system projects into the state |00>.
If the measurement result is True, then the system projects into the state |11>.
Applying a Pauli X operation to both qubits flips between |00> and |11>.
Therefore the Pauli kickback of the measurement is `stim.PauliString("XX")`.
Note that there are often many possible equivalent Pauli kickbacks. For example,
if in the previous example there was a third qubit in the |0> state, then both
`stim.PauliString("XX_")` and `stim.PauliString("XXZ")` are valid kickbacks.

Measurements with determinist results don't have a Pauli kickback.

Args:
    target: The index of the qubit to measure.

Returns:
    A (result, kickback) tuple.
    The result is a bool containing the measurement's output.
    The kickback is either None (meaning the measurement was deterministic) or a stim.PauliString
    (meaning the measurement was random, and the operations in the Pauli string flip between the
    two possible post-measurement states).

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()

    >>> s.measure_kickback(0)
    (False, None)

    >>> s.h(0)
    >>> s.measure_kickback(0)[1]
    stim.PauliString("+X")

    >>> def pseudo_post_select(qubit, desired_result):
    ...     m, kick = s.measure_kickback(qubit)
    ...     if m != desired_result:
    ...         if kick is None:
    ...             raise ValueError("Deterministic measurement differed from desired result.")
    ...         s.do(kick)
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.cnot(0, 2)
    >>> pseudo_post_select(qubit=2, desired_result=True)
    >>> s.measure_many(0, 1, 2)
    [True, True, True]

stim.TableauSimulator.measure_many(self, *args) -> List[bool]

Measures multiple qubits.

Args:
    *targets: The indices of the qubits to measure.

Returns:
    The measurement results as a list of bools.

stim.TableauSimulator.peek_bloch(self, target: int) -> stim.PauliString

Returns the current bloch vector of the qubit, represented as a stim.PauliString.

This is a non-physical operation. It reports information about the qubit without disturbing it.

Args:
    target: The qubit to peek at.

Returns:
    stim.PauliString("I"): The qubit is entangled. Its bloch vector is x=y=z=0.
    stim.PauliString("+Z"): The qubit is in the |0> state. Its bloch vector is z=+1, x=y=0.
    stim.PauliString("-Z"): The qubit is in the |1> state. Its bloch vector is z=-1, x=y=0.
    stim.PauliString("+Y"): The qubit is in the |i> state. Its bloch vector is y=+1, x=z=0.
    stim.PauliString("-Y"): The qubit is in the |-i> state. Its bloch vector is y=-1, x=z=0.
    stim.PauliString("+X"): The qubit is in the |+> state. Its bloch vector is x=+1, y=z=0.
    stim.PauliString("-X"): The qubit is in the |-> state. Its bloch vector is x=-1, y=z=0.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.peek_bloch(0)
    stim.PauliString("+Z")
    >>> s.x(0)
    >>> s.peek_bloch(0)
    stim.PauliString("-Z")
    >>> s.h(0)
    >>> s.peek_bloch(0)
    stim.PauliString("-X")
    >>> s.sqrt_x(1)
    >>> s.peek_bloch(1)
    stim.PauliString("-Y")
    >>> s.cz(0, 1)
    >>> s.peek_bloch(0)
    stim.PauliString("+_")

stim.TableauSimulator.peek_observable_expectation(self, observable: stim.PauliString) -> int

Determines the expected value of an observable (which will always be -1, 0, or +1).

This is a non-physical operation.
It reports information about the quantum state without disturbing it.

Args:
    observable: The observable to determine the expected value of.
        This observable must have a real sign, not an imaginary sign.

Returns:
    +1: Observable will be deterministically false when measured.
    -1: Observable will be deterministically true when measured.
    0: Observable will be random when measured.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.peek_observable_expectation(stim.PauliString("+Z"))
    1
    >>> s.peek_observable_expectation(stim.PauliString("+X"))
    0
    >>> s.peek_observable_expectation(stim.PauliString("-Z"))
    -1

    >>> s.do(stim.Circuit('''
    ...     H 0
    ...     CNOT 0 1
    ... '''))
    >>> queries = ['XX', 'YY', 'ZZ', '-ZZ', 'ZI', 'II', 'IIZ']
    >>> for q in queries:
    ...     print(q, s.peek_observable_expectation(stim.PauliString(q)))
    XX 1
    YY -1
    ZZ 1
    -ZZ -1
    ZI 0
    II 1
    IIZ 1

stim.TableauSimulator.reset(self, *args) -> None

Resets qubits to zero (e.g. by swapping them for zero'd qubit from the environment).

Args:
    *targets: The indices of the qubits to reset.

stim.TableauSimulator.s(self, *args) -> None

Applies a SQRT_Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.s_dag(self, *args) -> None

Applies a SQRT_Z_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.set_inverse_tableau(self, arg0: stim.Tableau) -> None

Overwrites the simulator's internal state with a copy of the given inverse tableau.

The inverse tableau specifies how Pauli product observables of qubits at the current time transform
into equivalent Pauli product observables at the beginning of time, when all qubits were in the
|0> state. For example, if the Z observable on qubit 5 maps to a product of Z observables at the
start of time then a Z basis measurement on qubit 5 will be deterministic and equal to the sign
of the product. Whereas if it mapped to a product of observables including an X or a Y then the Z
basis measurement would be random.

Any qubits not within the length of the tableau are implicitly in the |0> state.

Args:
    new_inverse_tableau: The tableau to overwrite the internal state with.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> t = stim.Tableau.random(4)
    >>> s.set_inverse_tableau(t)
    >>> s.current_inverse_tableau() == t
    True

stim.TableauSimulator.set_num_qubits(self, arg0: int) -> None

Forces the simulator's internal state to track exactly the qubits whose indices are in range(new_num_qubits).

Note that untracked qubits are always assumed to be in the |0> state. Therefore, calling this method
will effectively force any qubit whose index is outside range(new_num_qubits) to be reset to |0>.

Note that this method does not prevent future operations from implicitly expanding the size of the
tracked state (e.g. setting the number of qubits to 5 will not prevent a Hadamard from then being
applied to qubit 100, increasing the number of qubits to 101).

Args:
    new_num_qubits: The length of the range of qubits the internal simulator should be tracking.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> len(s.current_inverse_tableau())
    0

    >>> s.set_num_qubits(5)
    >>> len(s.current_inverse_tableau())
    5

    >>> s.x(0, 1, 2, 3)
    >>> s.set_num_qubits(2)
    >>> s.measure_many(0, 1, 2, 3)
    [True, True, False, False]

stim.TableauSimulator.sqrt_x(self, *args) -> None

Applies a SQRT_X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_x_dag(self, *args) -> None

Applies a SQRT_X_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_y(self, *args) -> None

Applies a SQRT_Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_y_dag(self, *args) -> None

Applies a SQRT_Y_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.state_vector(self) -> numpy.ndarray[numpy.float32]

Returns a wavefunction that satisfies the stabilizers of the simulator's current state.

This function takes O(n * 2**n) time and O(2**n) space, where n is the number of qubits. The computation is
done by initialization a random state vector and iteratively projecting it into the +1 eigenspace of each
stabilizer of the state. The global phase of the result is arbitrary (and will vary from call to call).

The result is in little endian order. The amplitude at offset b_0 + b_1*2 + b_2*4 + ... + b_{n-1}*2^{n-1} is
the amplitude for the computational basis state where the qubit with index 0 is storing the bit b_0, the
qubit with index 1 is storing the bit b_1, etc.

Returns:
    A `numpy.ndarray[numpy.complex64]` of computational basis amplitudes in little endian order.

Examples:
    >>> import stim
    >>> import numpy as np

    >>> # Check that the qubit-to-amplitude-index ordering is little-endian.
    >>> s = stim.TableauSimulator()
    >>> s.x(1)
    >>> s.x(4)
    >>> vector = s.state_vector()
    >>> np.abs(vector[0b_10010]).round(2)
    1.0
    >>> tensor = vector.reshape((2, 2, 2, 2, 2))
    >>> np.abs(tensor[1, 0, 0, 1, 0]).round(2)
    1.0

stim.TableauSimulator.swap(self, *args) -> None

Applies a swap gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.x(self, *args) -> None

Applies a Pauli X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.xcx(self, *args) -> None

Applies an X-controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.xcy(self, *args) -> None

Applies an X-controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.xcz(self, *args) -> None

Applies an X-controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.y(self, *args) -> None

Applies a Pauli Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.ycx(self, *args) -> None

Applies a Y-controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.ycy(self, *args) -> None

Applies a Y-controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.ycz(self, *args) -> None

Applies a Y-controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.z(self, *args) -> None

Applies a Pauli Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.