This repository has been archived by the owner on May 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathens210.cpp
367 lines (315 loc) · 14 KB
/
ens210.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
ens210.cpp - Library for the ENS210 relative humidity and temperature sensor with I2C interface from ams
2018 Oct 23 v2 Maarten Pennings Improved begin()
2017 Aug 2 v1 Maarten Pennings Created
*/
#include <assert.h>
#include <Arduino.h>
#include <Wire.h>
#include "ens210.h"
// begin() prints errors to help diagnose startup problems.
// Change these macro's to empty to suppress those prints.
#define PRINTLN Serial.println
#define PRINT Serial.print
#define PRINTF Serial.printf
// Chip constants
#define ENS210_PARTID 0x0210 // The expected part id of the ENS210
#define ENS210_BOOTING_MS 2 // Booting time in ms (also after reset, or going to high power)
// Addresses of the ENS210 registers
#define ENS210_REG_PART_ID 0x00
#define ENS210_REG_UID 0x04
#define ENS210_REG_SYS_CTRL 0x10
#define ENS210_REG_SYS_STAT 0x11
#define ENS210_REG_SENS_RUN 0x21
#define ENS210_REG_SENS_START 0x22
#define ENS210_REG_SENS_STOP 0x23
#define ENS210_REG_SENS_STAT 0x24
#define ENS210_REG_T_VAL 0x30
#define ENS210_REG_H_VAL 0x33
// Division macro (used in conversion functions), implementing integer division with rounding.
// It supports both positive and negative dividends (n), but ONLY positive divisors (d).
#define IDIV(n,d) ((n)>0 ? ((n)+(d)/2)/(d) : ((n)-(d)/2)/(d))
// 7654 3210
// Polynomial 0b 1000 1001 ~ x^7+x^3+x^0
// 0x 8 9
#define CRC7WIDTH 7 // A 7 bits CRC has polynomial of 7th order, which has 8 terms
#define CRC7POLY 0x89 // The 8 coefficients of the polynomial
#define CRC7IVEC 0x7F // Initial vector has all 7 bits high
// Payload data
#define DATA7WIDTH 17
#define DATA7MASK ((1UL<<DATA7WIDTH)-1) // 0b 0 1111 1111 1111 1111
#define DATA7MSB (1UL<<(DATA7WIDTH-1)) // 0b 1 0000 0000 0000 0000
// Compute the CRC-7 of 'val' (should only have 17 bits)
// https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Computation
static uint32_t crc7( uint32_t val ) {
// Setup polynomial
uint32_t pol= CRC7POLY;
// Align polynomial with data
pol = pol << (DATA7WIDTH-CRC7WIDTH-1);
// Loop variable (indicates which bit to test, start with highest)
uint32_t bit = DATA7MSB;
// Make room for CRC value
val = val << CRC7WIDTH;
bit = bit << CRC7WIDTH;
pol = pol << CRC7WIDTH;
// Insert initial vector
val |= CRC7IVEC;
// Apply division until all bits done
while( bit & (DATA7MASK<<CRC7WIDTH) ) {
if( bit & val ) val ^= pol;
bit >>= 1;
pol >>= 1;
}
return val;
}
// Resets ENS210 and checks its PART_ID. Returns false on I2C problems or wrong PART_ID.
// Stores solder correction.
bool ENS210::begin(void) {
bool ok;
uint16_t partid;
// Record solder correction
_soldercorrection= 0;
// Reset
ok= reset();
if( !ok ) ok= reset(); // Retry
if( !ok ) { PRINTLN("ens210: begin: reset failed (ENS210 connected? Wire.begin called?)"); return false; }
// Get partid
ok= getversion(&partid,NULL);
if( !ok ) { PRINTLN("ens210: begin: getversion failed"); return false; }
// Check partid
if( partid!=ENS210_PARTID ) { PRINT("ens210: begin: PARTID mismatch: "); PRINTLN(partid,HEX); return false; }
// Success
return true;
}
// Performs one single shot temperature and relative humidity measurement.
void ENS210::measure(int * t_data, int * t_status, int * h_data, int * h_status ) {
bool ok;
uint32_t t_val;
uint32_t h_val;
// Set default status for early bail out
*t_status= ENS210_STATUS_I2CERROR;
*h_status= ENS210_STATUS_I2CERROR;
// Start a single shot measurement
ok= startsingle(); if(!ok) return; // Both statuses have value ENS210_STATUS_I2CERROR
// Wait for measurement to complete
delay(ENS210_THCONV_SINGLE_MS);
// Get the measurement data
ok= read(&t_val,&h_val); if(!ok) return; // Both statuses have value ENS210_STATUS_I2CERROR
// Extract the data and update the statuses
extract(t_val, t_data, t_status);
extract(h_val, h_data, h_status);
}
// Sends a reset to the ENS210. Returns false on I2C problems.
bool ENS210::reset(void) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_SYS_CTRL); // Register address (SYS_CTRL)
Wire.write(0x80); // SYS_CTRL: reset
int result= Wire.endTransmission(); // STOP
//PRINTF("ens210: debug: reset %d\n",result);
delay(ENS210_BOOTING_MS); // Wait to boot after reset
return result==0;
}
// Sets ENS210 to low (true) or high (false) power. Returns false on I2C problems.
bool ENS210::lowpower(bool enable) {
uint8_t power = enable ? 0x01: 0x00;
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_SYS_CTRL); // Register address (SYS_CTRL)
Wire.write(power); // SYS_CTRL: power
int result= Wire.endTransmission(); // STOP
//PRINTF("ens210: debug: lowpower(%d) %d\n",power,result); // 0:success, 1:data-too-long, 2:NACK-on-addr, 3:NACK-on-data, 4:other
delay(ENS210_BOOTING_MS); // Wait boot-time after power switch
return result==0;
}
// Reads PART_ID and UID of ENS210. Returns false on I2C problems.
bool ENS210::getversion(uint16_t*partid,uint64_t*uid) {
bool ok;
uint8_t i2cbuf[2];
int result;
// Must disable low power to read PART_ID or UID
ok= lowpower(false); if(!ok) goto errorexit;
// Read the PART_ID
if( partid!=0 ) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_PART_ID); // Register address (PART_ID); using auto increment
result= Wire.endTransmission(false); // Repeated START
Wire.requestFrom(_slaveaddress,2); // From ENS210, read 2 bytes, STOP
//PRINTF("ens210: debug: getversion/part_id %d\n",result);
if( result!=0 ) goto errorexit;
// Retrieve and pack bytes into partid
for( int i=0; i<2; i++ ) i2cbuf[i]= Wire.read();
*partid= i2cbuf[1]*256U + i2cbuf[0]*1U;
}
// Read the UID
if( uid!=0 ) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_UID); // Register address (UID); using auto increment
result= Wire.endTransmission(false); // Repeated START
Wire.requestFrom(_slaveaddress,8); // From ENS210, read 8 bytes, STOP
//PRINTF("ens210: debug: getversion/uid %d\n",result);
if( result!=0 ) goto errorexit;
// Retrieve and pack bytes into uid (ignore the endianness)
for( int i=0; i<8; i++) ((uint8_t*)uid)[i]=Wire.read();
}
// Go back to default power mode (low power enabled)
ok= lowpower(true); if(!ok) goto errorexit;
// { uint32_t hi= *uid >>32, lo= *uid & 0xFFFFFFFF; PRINTF("ens210: debug: PART_ID=%04x UID=%08x %08x\n",*partid,hi,lo); }
// Success
return true;
errorexit:
// Try to go back to default mode (low power enabled)
ok= lowpower(true);
// Hopefully enabling low power was successful; but there was an error before that anyhow
return false;
}
// Configures ENS210 to perform a single measurement. Returns false on I2C problems.
bool ENS210::startsingle(void) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_SENS_RUN); // Register address (SENS_RUN); using auto increment
Wire.write(0x00); // SENS_RUN : T_RUN=0/single , H_RUN=0/single
Wire.write(0x03); // SENS_START: T_START=1/start, H_START=1/start
int result= Wire.endTransmission(); // STOP
//PRINTF("ens210: debug: startsingle %d\n",result);
return result==0;
}
// Configures ENS210 to switch to continuous measurement. Returns false on I2C problems.
bool ENS210::startcont(void) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_SENS_RUN); // Register address (SENS_RUN); using auto increment
Wire.write(0x03); // SENS_RUN : T_RUN=1/cont , H_RUN=1/cont
Wire.write(0x03); // SENS_START: T_START=1/start, H_START=1/start
int result= Wire.endTransmission(); // STOP
//PRINTF("ens210: debug: startcont %d\n",result);
return result==0;
}
// Configures ENS210 to stop continuous measurement. Returns false on I2C problems.
bool ENS210::stopcont(void) {
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_SENS_STOP); // Register address (SENS_STOP)
Wire.write(0x03); // SENS_START: T_STOP=1/start, H_STOP=1/start
int result= Wire.endTransmission(); // STOP
//PRINTF("ens210: debug: stopcont %d\n",result);
return result==0;
}
// Reads measurement data from the ENS210. Returns false on I2C problems.
bool ENS210::read(uint32_t *t_val, uint32_t *h_val) {
uint8_t i2cbuf[6];
// Read T_VAL and H_VAL
Wire.beginTransmission(_slaveaddress); // START, SLAVEADDR
Wire.write(ENS210_REG_T_VAL); // Register address (T_VAL); using auto increment (up to H_VAL)
int result= Wire.endTransmission(false); // Repeated START
Wire.requestFrom(_slaveaddress,6); // From ENS210, read 6 bytes, STOP
//PRINTF("ens210: debug: read %d\n",result);
if( result!=0 ) return false;
// Retrieve and pack bytes into t_val and h_val
for( int i=0; i<6; i++ ) i2cbuf[i]= Wire.read();
*t_val= (i2cbuf[2]*65536UL) + (i2cbuf[1]*256UL) + (i2cbuf[0]*1UL);
*h_val= (i2cbuf[5]*65536UL) + (i2cbuf[4]*256UL) + (i2cbuf[3]*1UL);
// Range checking
//PRINTF("ens210: debug: read T=%06x H=%06x\n",*t_val,*h_val);
//if( *t_val<(273-100)*64 || *t_val>(273+150)*64 ) return false; // Accept only readouts -100<=T_in_C<=+150 (arbitrary limits)
//if( *h_val>100*512 ) return false; // Accept only readouts 0<=H<=100
// Success
return true;
}
// Reads measurement data from the ENS210 and extracts data and status.
void ENS210::read(int*t_data,int*t_status,int*h_data,int*h_status) {
uint32_t t_val;
uint32_t h_val;
// Get the measurement data
bool ok=read(&t_val,&h_val);
if( !ok ) {
// Signal I2C error
*t_status= ENS210_STATUS_I2CERROR;
*h_status= ENS210_STATUS_I2CERROR;
} else {
// Extract the data and update the statuses
extract(t_val, t_data, t_status);
extract(h_val, h_data, h_status);
}
}
// Extracts measurement `data` and `status` from a `val` obtained from `read`.
// Upon entry, 'val' is the 24 bits read from T_VAL or H_VAL.
// Upon exit, 'data' is the T_DATA or H_DATA, and 'status' one of ENS210_STATUS_XXX.
void ENS210::extract(uint32_t val, int * data, int * status) {
// Destruct 'val'
* data = (val>>0 ) & 0xffff;
int valid = (val>>16) & 0x1;
uint32_t crc = (val>>17) & 0x7f;
uint32_t payload = (val>>0 ) & 0x1ffff;
int crc_ok= crc7(payload)==crc;
// Check CRC and valid bit
if( !crc_ok ) *status= ENS210_STATUS_CRCERROR;
else if( !valid ) *status= ENS210_STATUS_INVALID;
else *status= ENS210_STATUS_OK;
}
// Converts a status (ENS210_STATUS_XXX) to a human readable string.
const char * ENS210::status_str( int status ) {
switch( status ) {
case ENS210_STATUS_I2CERROR : return "i2c-error";
case ENS210_STATUS_CRCERROR : return "crc-error";
case ENS210_STATUS_INVALID : return "data-invalid";
case ENS210_STATUS_OK : return "ok";
default : return "unknown-status";
}
}
// Convert raw `t_data` temperature to Kelvin (also applies the solder correction).
// The output value is in Kelvin multiplied by parameter `multiplier`.
int32_t ENS210::toKelvin(int t_data, int multiplier) {
assert( (1<=multiplier) && (multiplier<=1024) );
// Force 32 bits
int32_t t= t_data & 0xFFFF;
// Compensate for soldering effect
t-= _soldercorrection;
// Return m*K. This equals m*(t/64) = (m*t)/64
// Note m is the multiplier, K is temperature in Kelvin, t is raw t_data value.
// Uses K=t/64.
return IDIV(multiplier*t,64);
}
// Convert raw `t_data` temperature to Celsius (also applies the solder correction).
// The output value is in Celsius multiplied by parameter `multiplier`.
int32_t ENS210::toCelsius(int t_data, int multiplier) {
assert( (1<=multiplier) && (multiplier<=1024) );
// Force 32 bits
int32_t t= t_data & 0xFFFF;
// Compensate for soldering effect
//t-= _soldercorrection;
// Return m*C. This equals m*(K-273.15) = m*K - 27315*m/100 = m*t/64 - 27315*m/100
// Note m is the multiplier, C is temperature in Celsius, K is temperature in Kelvin, t is raw t_data value.
// Uses C=K-273.15 and K=t/64.
return IDIV(multiplier*t,64) - IDIV(27315L*multiplier,100);
}
// Convert raw `t_data` temperature to Fahrenheit (also applies the solder correction).
// The output value is in Fahrenheit multiplied by parameter `multiplier`.
int32_t ENS210::toFahrenheit(int t_data, int multiplier) {
assert( (1<=multiplier) && (multiplier<=1024) );
// Force 32 bits
int32_t t= t_data & 0xFFFF;
// Compensate for soldering effect
t-= _soldercorrection;
// Return m*F. This equals m*(1.8*(K-273.15)+32) = m*(1.8*K-273.15*1.8+32) = 1.8*m*K-459.67*m = 9*m*K/5 - 45967*m/100 = 9*m*t/320 - 45967*m/100
// Note m is the multiplier, F is temperature in Fahrenheit, K is temperature in Kelvin, t is raw t_data value.
// Uses F=1.8*(K-273.15)+32 and K=t/64.
return IDIV(9*multiplier*t,320) - IDIV(45967L*multiplier,100);
// The first multiplication stays below 32 bits (t:16, multiplier:11, 9:4)
// The second multiplication stays below 32 bits (multiplier:10, 45967:16)
}
// Convert raw `h_data` relative humidity to %RH.
// The output value is in %RH multiplied by parameter `multiplier`.
int32_t ENS210::toPercentageH(int h_data, int multiplier) {
assert( (1<=multiplier) && (multiplier<=1024) );
// Force 32 bits
int32_t h= h_data & 0xFFFF;
// Return m*H. This equals m*(h/512) = (m*h)/512
// Note m is the multiplier, H is the relative humidity in %RH, h is raw h_data value.
// Uses H=h/512.
return IDIV(multiplier*h, 512);
}
// Sets the solder correction (default is 50mK) - only used by the `toXxx` functions.
void ENS210::correction_set(int correction) {
assert( -1*64<correction && correction<+1*64 ); // A correction of more than 1 Kelvin does not make sense (but the 1K is arbitrary)
_soldercorrection = correction;
}
// Gets the solder correction
int ENS210::correction_get(void) {
return _soldercorrection;
}