-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathRunJAGS.R
62 lines (54 loc) · 2.03 KB
/
RunJAGS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
### define function that runs JAGS model
RunJAGS <- function(data,n.iter,n.chains){
require(rjags)
source("global_input_parameters.R") # For burn-in
##JAGS code
ModisGCCModel = "
model{
#### Data Model: NDVI
for(i in 1:n){
y[i] ~ dnorm(x[i],tau_ndvi)
}
#### Data Model: GCC
for(i in 1:n){
z[i] ~ dnorm(x[i],tau_gcc)
}
#### Process Model
#### Color is the expected new phenology stage given the previous stage and logistic
#### subtraction instead of addition in the discrete logistic eqn makes r negative (so logistic goes down).
for(i in 2:n){
color[i] <- max(0, min(1, x[i-1] - r * x[i-1] * (1-x[i-1]) ) )
x[i]~dnorm(color[i],tau_add)
}
#### Priors
x[1] ~ dnorm(x_ic,tau_ic)
tau_ndvi ~ dgamma(a_ndvi,r_ndvi)
tau_gcc ~ dgamma(a_gcc,r_gcc)
tau_add ~ dgamma(a_add,r_add)
r ~ dexp(0.148) # Exp is the maximum entropy distribution for constraints of positive with givn mean
# 0.148 is from Richardson et al. 2006.
}"
## JAGS initial conditions
init <- list()
for(i in 1:n.chains){
y.samp = sample(data$y,length(data$y),replace=TRUE)
########## what are the values for tau_ndvi and tau_gcc based on? is this reasonable?
init[[i]] <- list(x = rep(1,length(data$y)),
tau_add = runif(1,0,1)/var(diff(y.samp),na.rm=TRUE),
tau_ndvi = 10,tau_gcc=10)
}
## compile JAGS model
j.model <- jags.model (file = textConnection(ModisGCCModel),
data = data,
inits = init,
n.chains = n.chains)
## burn-in
jags.out <- coda.samples (model = j.model,
variable.names = c("tau_add","tau_ndvi","tau_gcc","r"),
n.iter = min(n.iter,global_input_parameters$burn.in.iterations))
## run MCMC
jags.out <- coda.samples (model = j.model,
variable.names = c("x","tau_add","tau_ndvi","tau_gcc","r"),
n.iter = n.iter)
return(jags.out)
}