-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
executable file
·85 lines (67 loc) · 2.57 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import io
import pickle
import librosa
import librosa.display
import pandas as pd
import numpy as np
import base64
import matplotlib.pyplot as plt
from utils.toc import Toc
from utils.AudioPredict import get_features, predict
from utils.visualization import create_multibarchart, create_barchart, create_piechart, create_spectrogram, create_waveplot
import streamlit as st
import streamlit.components.v1 as components
from pydub import AudioSegment
import plotly.graph_objects as go
@st.cache(allow_output_mutation=True)
def get_base64_of_bin_file(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_png_as_page_bg(png_file):
bin_str = get_base64_of_bin_file(png_file)
page_bg_img = '''
<style>
body {
background-image: url("data:image/png;base64,%s");
background-size: cover;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
return
def main():
toc = Toc()
st.set_option('deprecation.showPyplotGlobalUse', False)
set_png_as_page_bg('dataset_plots/Background.jpg')
toc.title('Mood Boost 🧠😄')
#Visualizations
toc.header("📊 Visualizations")
toc.subheader("1. Effects of COVID-19 on College Students' Mental Health in the US : Interview Survey")
st.markdown('#### Challenges to College Students Mental Health ')
create_piechart()
st.markdown('#### Participants ratings of mental health aspects in order of negative impacts')
create_multibarchart()
toc.subheader('2. Kaggle : Survey On Indian Students')
create_barchart()
toc.subheader('3. Sucide rates by State from 2015 - 2020')
st.image('dataset_plots/heatmap.jpg')
# uploading the file and getting the results
toc.header("🎤 Voice based Emotion Detection")
uploaded_file = st.file_uploader("Select file from your directory")
if uploaded_file is not None:
audio_bytes = uploaded_file.read()
# st.audio(audio_bytes, format='audio/mp3')
file_var = AudioSegment.from_file(io.BytesIO(audio_bytes), format = 'wav')
file_var.export(uploaded_file.name[:-4] + '.wav', format='wav')
wav_file = uploaded_file.name[:-4]+'.wav'
data, sampling_rate = librosa.load(wav_file)
(text, link) = predict(data, sampling_rate, wav_file)
st.markdown(f'### {text}')
st.markdown(f"![Alt Text]({link})")
create_waveplot(data, sampling_rate)
create_spectrogram(data, sampling_rate)
toc.placeholder()
toc.generate()
if __name__ == "__main__":
main()