-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBLEU.py
293 lines (184 loc) · 8.12 KB
/
BLEU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python implementation of BLEU and smooth-BLEU.
This module provides a Python implementation of BLEU and smooth-BLEU.
Smooth BLEU is computed following the method outlined in the paper:
Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic
evaluation metrics for machine translation. COLING 2004.
"""
import collections
import math
def _get_ngrams(segment, max_order):
"""Extracts all n-grams upto a given maximum order from an input segment.
Args:
segment: text segment from which n-grams will be extracted.
max_order: maximum length in tokens of the n-grams returned by this
methods.
Returns:
The Counter containing all n-grams upto max_order in segment
with a count of how many times each n-gram occurred.
"""
ngram_counts = collections.Counter()
for order in range(1, max_order + 1):
for i in range(0, len(segment) - order + 1):
ngram = tuple(segment[i:i+order])
ngram_counts[ngram] += 1
return ngram_counts
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
smooth=False):
"""Computes BLEU score of translated segments against one or more references.
Args:
reference_corpus: list of lists of references for each translation. Each
reference should be tokenized into a list of tokens.
translation_corpus: list of translations to score. Each translation
should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
precisions and brevity penalty.
"""
matches_by_order = [0] * max_order
possible_matches_by_order = [0] * max_order
reference_length = 0
translation_length = 0
for (references, translation) in zip(reference_corpus,
translation_corpus):
reference_length += min(len(r) for r in references)
translation_length += len(translation)
merged_ref_ngram_counts = collections.Counter()
for reference in references:
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
translation_ngram_counts = _get_ngrams(translation, max_order)
overlap = translation_ngram_counts & merged_ref_ngram_counts
for ngram in overlap:
matches_by_order[len(ngram)-1] += overlap[ngram]
for order in range(1, max_order+1):
possible_matches = len(translation) - order + 1
if possible_matches > 0:
possible_matches_by_order[order-1] += possible_matches
precisions = [0] * max_order
for i in range(0, max_order):
if smooth:
precisions[i] = ((matches_by_order[i] + 1.) /
(possible_matches_by_order[i] + 1.))
else:
if possible_matches_by_order[i] > 0:
precisions[i] = (float(matches_by_order[i]) /
possible_matches_by_order[i])
else:
precisions[i] = 0.0
if min(precisions) > 0:
p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
geo_mean = math.exp(p_log_sum)
else:
geo_mean = 0
ratio = float(translation_length) / reference_length
if ratio > 1.0:
bp = 1.
else:
bp = math.exp(1 - 1. / ratio)
bleu = geo_mean * bp
return (bleu, precisions, bp, ratio, translation_length, reference_length)
import jieba
def get_candidate_reference(path):
reference = []
null = []
like = []
disgust = []
sad = []
happy = []
angry = []
with open(path, 'r', encoding='utf-8')as infile:
lines = infile.readlines()
newlines = []
for line in lines:
line = line.strip()
if line:
newlines.append(line)
for index, line in enumerate(newlines):
if index % 7 == 0:
line = line.split('\t')[3]
#line = ' '.join(jieba.cut(line))
line=[word for word in jieba.cut(line)]
reference.append(line)
elif index % 7 == 1:
line = line.split('\t')[1]
#line = ' '.join(jieba.cut(line))
line = [word for word in jieba.cut(line)]
null.append(line)
elif index % 7 == 2:
line = line.split('\t')[1]
line = [word for word in jieba.cut(line)]
like.append(line)
elif index % 7 == 3:
line = line.split('\t')[1]
line = [word for word in jieba.cut(line)]
sad.append(line)
elif index % 7 == 4:
line = line.split('\t')[1]
line = [word for word in jieba.cut(line)]
disgust.append(line)
elif index % 7 == 5:
line = line.split('\t')[1]
line = [word for word in jieba.cut(line)]
angry.append(line)
elif index % 7 == 6:
line = line.split('\t')[1]
line = [word for word in jieba.cut(line)]
happy.append(line)
return reference, null, like, angry, happy, disgust, sad
if __name__ == "__main__":
path = r'C:\Users\hp\Desktop\ECM_test_result.txt'
reference, null, like, angry, happy, disgust, sad = get_candidate_reference(path)
references=[]
for r in reference:
temp=[]
temp.append(r)
references.append(temp)
sum_bleu=0
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, null, max_order=3,smooth=True)
sum_bleu+=bleu
print('null:{}'.format(round(bleu,5)))
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, like, max_order=3,smooth=True)
sum_bleu += bleu
print('like:{}'.format(round(bleu,5)))
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, angry, max_order=3,smooth=True)
sum_bleu += bleu
print('angry:{}'.format(round(bleu,5)))
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, happy, max_order=3,smooth=True)
sum_bleu += bleu
print('happy:{}'.format(round(bleu,5)))
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, disgust, max_order=3,smooth=True)
sum_bleu += bleu
print('disgust:{}'.format(round(bleu,5)))
bleu, precisions, bp, ratio, translation_length, reference_length=compute_bleu(references, sad, max_order=3,smooth=True)
sum_bleu += bleu
print('sad:{}'.format(round(bleu,5)))
print('average:{}'.format(round(sum_bleu/6,5)))
# null=[['你', '说', '的', '是', ',', '是不是'], ['你', '是', '小朋友', ',', '你', '是', '小孩子']]
#
# reference=[[['我', '不', '这样', '认为', '。']],[['真相', '往往', '是', '出乎意料', '的', '。']]]
#
# bleu, precisions, bp, ratio, translation_length, reference_length = compute_bleu(reference, null, max_order=4,
# smooth=True)
#
#
# null=[['你', '说', '的', '是', ',', '是不是'], ['你', '是', '小朋友', ',', '你', '是', '小孩子']]
#
# reference=[['我', '不', '这样', '认为', '。'],['真相', '往往', '是', '出乎意料', '的', '。']]
#
# bleu, precisions, bp, ratio, translation_length, reference_length = compute_bleu(reference, null, max_order=4,
# smooth=True)