Skip to content

Latest commit

 

History

History
160 lines (100 loc) · 4.92 KB

README.md

File metadata and controls

160 lines (100 loc) · 4.92 KB

Testing

EMG API

Metagenomics service is a large-scale platform for analyzing and archiving metagenomic and metatranscriptome data. It provides a standardized analysis workflow, capable of producing rich taxonomic diversity and functional annotations, and allows analysis results to be compared within and across projects on a broad level, and across different data types (e.g. metagenomic and metatranscriptomic).

Setup

Local env.

For development, use the parent repo "MGnify Web" which includes this API repository, as well as the frontend web repository needed to develop/run the MGnify website.

MGnify Web parent repo

The parent repo uses docker-compose to configure a development environment and test data for the entire stack of the MGnify website. It is the recommended development setup. See: MGnify Web on GitHub for instructions.

The Docker setup is just for local dev. at the moment.

This API relies on a relational (SQLite or MySQL) and a document (Mongo) database.

This docker compose setup in the parent repo handles these.

Helper scripts

There are some helper scripts that are meant to make running the project locally easier.

  • manage.sh wrapper for manage.py commands such as runserver.
  • gunicorn.sh run the app using gunicorn with the --reload flag.

Setup

Create/edit configuration file in ./config/<some config>.yaml and set the env var EMG_CONFIG to point to that file.

DB config file

The config file must specify the databases:

emg:
  databases:
    default:
      ENGINE: 'django.db.backends.mysql'
      HOST: 'host'
      PORT: 3306 (or other)
      DB: 'database_name'
      NAME: 'schema_name'
      USER: 'user'
      PASSWORD: 'password'
    
    ...

(see the example config yamls for full details).

If not using the mgnify-web docker compose setup for some reason:

Install virtualenv.

Create a virtual environment or a conda env, e.g.: virtualenv -p python3 venv

Activate and install the dependencies source venv/bin/activate && pip install .[dev,admin].

Run the migrations: ./manage.sh migrate

Run the server: ./manage.sh runserver 8000

If using the mgnify-web setup, follow the instructions in the parents repo README, and use the Taskfile in it.


TODO: update the following

Production env.

Install

Install application::

conda create -q -n myenv python=3.6.8
source activate myenv

pip install https://github.com/EBI-Metagenomics/emgapi/archive/$latestTag.tar.gz

Create database::

mysql -e 'CREATE DATABASE emg;'
mysql -u root --password="" --database=emg < travis/biomes.sql
mysql -u root --password="" --database=emg < travis/variable_names.sql
mysql -u root --password="" --database=emg < travis/experiment_type.sql
mysql -u root --password="" --database=emg < travis/analysis_status.sql

Start application (API)::

emgcli check --deploy
emgcli migrate --fake-initial
emgcli collectstatic --noinput

# start application server
# for a TCP configuration use: --bind 127.0.0.1:8000
# for UNIX domain socket use: --bind=unix:$SOCKFILE
emgdeploy --daemon -p ~/emgvar/emg.pid --workers 5 --reload emgcli.wsgi:application

NOTE: ~/emgvar is used as default directory to store logs, etc.

How to run the webuploader?

How to install the webuploader (one off)?

conda create -q -n myenv python=3.6.8
source activate myenv

pip install -U -r https://raw.githubusercontent.com/EBI-Metagenomics/emgapi/webuploader/requirements-webuploader.txt
pip install "git+git://github.com/EBI-Metagenomics/emgapi.git@webuploader"

source activate myenv

cd mycheckoutclone

export PYTHONPATH="${PYTHONPATH}:$(pwd)/emgcli"
export EMG_CONFIG=docker/local-config.yaml
export ENA_API_PASSWORD=?
export ENA_API_USER=?

./manage.sh import_analysis <rootpath>

How to run a Django schema or data migration on dev?

sync PRO/REL DB to DEV

# Source virtual environment
source activate myenv

# export environment variables
export EMG_CONFIG=docker/dev-config.yaml

cd mycheckoutclone

emgcli migrate --fake-initial

Run in Docker

Start containers using::

docker-compose -f docker/docker-compose.yml up --build --abort-on-container-exit

Tests

Tests are ran using pytest <https://pytest.org>_.

Set the env variable EMG_CONFIG.

To run tests::

python setup.py test

# or the simpler
pytest # will use config/local-tests.yml as the config file

or use the wrapper script (will user docker/contig-test.yml)::

./run-tests.sh

Copyright (c) 2017-2022 EMBL - European Bioinformatics Institute