给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
输入:grid = [[1,2,3],[4,5,6]]
输出:12
let minPathSum = grid => {
if (grid === null || grid.length === 0 || grid[0].length === 0) return 0;
let m = grid.length, n = grid[0].length;
let dp = Array(m).fill(0).map(() => Array(n).fill(0));
dp[0][0] = grid[0][0];
// 第一列
for (let i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (let j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
func minPathSum(grid [][]int) int {
Min := func(a, b int) int {
if a < b {
return a
}
return b
}
if len(grid) == 0 || len(grid[0]) == 0 {
return 0
}
m, n := len(grid), len(grid[0])
dp := make([][]int, m)
for i := 0; i < len(dp); i++ {
dp[i] = make([]int, n)
}
dp[0][0] = grid[0][0]
for i := 1; i < m; i++ {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
for j := 1; j < n; j++ {
dp[0][j] = dp[0][j - 1] + grid[0][j]
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
dp[i][j] = Min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
}
}
return dp[m-1][n-1]
}
class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0)
return 0;
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
// 第一列
for (int i = 1; i < m; i++){
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 第一行
for (int j = 1; j < n; j++){
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 0; i < dp.length; i++) {
System.out.println(Arrays.toString(dp[i]));
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++){
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
for (int i = 0; i < dp.length; i++) {
System.out.println(Arrays.toString(dp[i]));
}
return dp[m - 1][n - 1];
}
}