forked from specht/diob_lkm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiob.c
664 lines (567 loc) · 22.1 KB
/
diob.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/*
* Note: Before you can compile this, you need to follow the
* instructions in sys_call_table.template.h.
*/
#undef __KERNEL__
#define __KERNEL__
#define DEBUG_LEVEL KERN_DEBUG
#undef MODULE
#define MODULE
#include <asm/cacheflush.h>
#include <asm/uaccess.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/unistd.h>
#include <linux/vmalloc.h>
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
#include <linux/fdtable.h>
#endif
MODULE_LICENSE("GPL");
#include "sys_call_table.h"
asmlinkage int (*original_open) (const char*, int, int);
asmlinkage int (*original_close) (int);
asmlinkage off_t (*original_lseek) (int, off_t, int);
asmlinkage ssize_t (*original_read) (int, void*, size_t);
asmlinkage ssize_t (*original_write) (int, const void*, size_t);
asmlinkage int (*original_fstat) (int, struct stat*);
// we're using 16 bit hashes
#define MAX_HASH 0x10000
// a file must be at least this big to be watched
#define MIN_FILE_SIZE 16777216
// every read smaller than this is considered a small read
#define MAX_READ_SIZE 131072
// allocate no more than this many accelerators
#define MAX_ACCELERATORS 256
/* define stage thresholds as (trigger_count, buffer size in kilobytes) tuples
* ATTENTION: The trigger counts are 16 bit numbers and must not exceed 65534.
*
* Assuming a default read size of 4k:
* - 256k buffering is triggered after reading a total of 4 MB,
* - 1M buffering is triggered after reading a total of 8 MB,
* - 4M buffering is triggered after reading a total of 12 MB
*/
#define STAGE_THRESHOLD_COUNT 3
static unsigned int STAGE_THRESHOLDS[STAGE_THRESHOLD_COUNT][2] = {
{1024, 256},
{1024, 1024},
{1024, 4096}
};
typedef struct _r_hash_watcher r_hash_watcher;
typedef struct _r_fd_accelerator r_fd_accelerator;
typedef unsigned short hash_t;
// this structure is 24 bytes big on a 64 bit machine
// we need 64k of these entries, so it's 1.5 MB
struct _r_hash_watcher
{
const void* file_pointer;
// TODO: This is cosy, but it wastes a lot of space because a full page
// is probably allocated on every vmalloc() call, we could use 8k instead of 1M
// here
r_fd_accelerator* accelerator;
unsigned short stage;
unsigned short small_read_count;
};
// this structure is 32 bytes big on a 64 bit machine
struct _r_fd_accelerator
{
size_t buffer_size;
size_t buffer_length;
off_t buffer_offset;
void *buffer;
};
// this structure uses 24 * 65536 bytes = 1.5 MiB in RAM
static r_hash_watcher hash_watcher[MAX_HASH];
static unsigned int accelerator_count = 0;
static unsigned long int free_read_calls = 0;
unsigned short crc16_table[256] = {
0x0000, 0xdc77, 0x2837, 0xf440, 0x506e, 0x8c19, 0x7859, 0xa42e,
0xa0dc, 0x7cab, 0x88eb, 0x549c, 0xf0b2, 0x2cc5, 0xd885, 0x04f2,
0xd161, 0x0d16, 0xf956, 0x2521, 0x810f, 0x5d78, 0xa938, 0x754f,
0x71bd, 0xadca, 0x598a, 0x85fd, 0x21d3, 0xfda4, 0x09e4, 0xd593,
0x321b, 0xee6c, 0x1a2c, 0xc65b, 0x6275, 0xbe02, 0x4a42, 0x9635,
0x92c7, 0x4eb0, 0xbaf0, 0x6687, 0xc2a9, 0x1ede, 0xea9e, 0x36e9,
0xe37a, 0x3f0d, 0xcb4d, 0x173a, 0xb314, 0x6f63, 0x9b23, 0x4754,
0x43a6, 0x9fd1, 0x6b91, 0xb7e6, 0x13c8, 0xcfbf, 0x3bff, 0xe788,
0x6436, 0xb841, 0x4c01, 0x9076, 0x3458, 0xe82f, 0x1c6f, 0xc018,
0xc4ea, 0x189d, 0xecdd, 0x30aa, 0x9484, 0x48f3, 0xbcb3, 0x60c4,
0xb557, 0x6920, 0x9d60, 0x4117, 0xe539, 0x394e, 0xcd0e, 0x1179,
0x158b, 0xc9fc, 0x3dbc, 0xe1cb, 0x45e5, 0x9992, 0x6dd2, 0xb1a5,
0x562d, 0x8a5a, 0x7e1a, 0xa26d, 0x0643, 0xda34, 0x2e74, 0xf203,
0xf6f1, 0x2a86, 0xdec6, 0x02b1, 0xa69f, 0x7ae8, 0x8ea8, 0x52df,
0x874c, 0x5b3b, 0xaf7b, 0x730c, 0xd722, 0x0b55, 0xff15, 0x2362,
0x2790, 0xfbe7, 0x0fa7, 0xd3d0, 0x77fe, 0xab89, 0x5fc9, 0x83be,
0xc86c, 0x141b, 0xe05b, 0x3c2c, 0x9802, 0x4475, 0xb035, 0x6c42,
0x68b0, 0xb4c7, 0x4087, 0x9cf0, 0x38de, 0xe4a9, 0x10e9, 0xcc9e,
0x190d, 0xc57a, 0x313a, 0xed4d, 0x4963, 0x9514, 0x6154, 0xbd23,
0xb9d1, 0x65a6, 0x91e6, 0x4d91, 0xe9bf, 0x35c8, 0xc188, 0x1dff,
0xfa77, 0x2600, 0xd240, 0x0e37, 0xaa19, 0x766e, 0x822e, 0x5e59,
0x5aab, 0x86dc, 0x729c, 0xaeeb, 0x0ac5, 0xd6b2, 0x22f2, 0xfe85,
0x2b16, 0xf761, 0x0321, 0xdf56, 0x7b78, 0xa70f, 0x534f, 0x8f38,
0x8bca, 0x57bd, 0xa3fd, 0x7f8a, 0xdba4, 0x07d3, 0xf393, 0x2fe4,
0xac5a, 0x702d, 0x846d, 0x581a, 0xfc34, 0x2043, 0xd403, 0x0874,
0x0c86, 0xd0f1, 0x24b1, 0xf8c6, 0x5ce8, 0x809f, 0x74df, 0xa8a8,
0x7d3b, 0xa14c, 0x550c, 0x897b, 0x2d55, 0xf122, 0x0562, 0xd915,
0xdde7, 0x0190, 0xf5d0, 0x29a7, 0x8d89, 0x51fe, 0xa5be, 0x79c9,
0x9e41, 0x4236, 0xb676, 0x6a01, 0xce2f, 0x1258, 0xe618, 0x3a6f,
0x3e9d, 0xe2ea, 0x16aa, 0xcadd, 0x6ef3, 0xb284, 0x46c4, 0x9ab3,
0x4f20, 0x9357, 0x6717, 0xbb60, 0x1f4e, 0xc339, 0x3779, 0xeb0e,
0xeffc, 0x338b, 0xc7cb, 0x1bbc, 0xbf92, 0x63e5, 0x97a5, 0x4bd2
};
unsigned short crc16_from_pointer(const void* p)
{
const unsigned char *puc = (const unsigned char*)p;
unsigned short crc = 0;
int k;
for (k = 0; k < sizeof(p); k++)
crc = crc16_table[(crc ^ *puc++) & 0xff];
return crc;
}
static void disable_page_protection(void)
{
unsigned long value;
asm volatile("mov %%cr0,%0" : "=r" (value));
if (value & 0x00010000)
{
value &= ~0x00010000;
asm volatile("mov %0,%%cr0": : "r" (value));
}
}
static void enable_page_protection(void)
{
unsigned long value;
asm volatile("mov %%cr0,%0" : "=r" (value));
if (!(value & 0x00010000))
{
value |= 0x00010000;
asm volatile("mov %0,%%cr0": : "r" (value));
}
}
static void init_watcher(hash_t hash)
{
hash_watcher[hash].file_pointer = NULL;
hash_watcher[hash].stage = 0;
hash_watcher[hash].small_read_count = 0;
hash_watcher[hash].accelerator = NULL;
}
static void reset_accelerator(hash_t hash)
{
if (hash_watcher[hash].accelerator)
{
if (hash_watcher[hash].accelerator->buffer)
{
vfree(hash_watcher[hash].accelerator->buffer);
hash_watcher[hash].accelerator->buffer = NULL;
}
vfree(hash_watcher[hash].accelerator);
hash_watcher[hash].accelerator = NULL;
accelerator_count--;
}
}
// entirely reset a watcher
static void reset_watcher(hash_t hash)
{
if (hash_watcher[hash].file_pointer)
{
if (hash_watcher[hash].accelerator)
reset_accelerator(hash);
init_watcher(hash);
}
}
// rewind a watcher - keep watching the file, but disable buffering and
// reset the stage and small_read_count
static void reset_watcher_stage(hash_t hash)
{
if (hash_watcher[hash].file_pointer)
{
if (hash_watcher[hash].stage > 0)
printk(DEBUG_LEVEL "[diob_lkm] [%04x] Rewinding watcher, was at stage %d, small_read_count %d.\n",
hash, hash_watcher[hash].stage, hash_watcher[hash].small_read_count);
hash_watcher[hash].stage = 0;
hash_watcher[hash].small_read_count = 0;
if (hash_watcher[hash].accelerator)
reset_accelerator(hash);
}
}
// This function returns 0 if every is well or a negative value if there was an
// error which should be returned by the calling function. This error may come
// either from read() or lseek() - passing lseek() errors off as read() errors
// should be OK in this context.
static int setup_accelerator(hash_t hash, unsigned int buffer_size, int fd)
{
r_fd_accelerator* temp_accelerator = NULL;
if (accelerator_count >= MAX_ACCELERATORS)
// we already have enough accelerators, let's not hog the entire RAM
return 0;
printk(DEBUG_LEVEL "[diob_lkm] [%04x] Now buffering with %d bytes.\n", hash, buffer_size);
temp_accelerator = vmalloc(sizeof(r_fd_accelerator));
if (temp_accelerator)
{
temp_accelerator->buffer_size = buffer_size;
temp_accelerator->buffer_length = 0;
temp_accelerator->buffer_offset = 0;
temp_accelerator->buffer = vmalloc(temp_accelerator->buffer_size);
if (temp_accelerator->buffer)
{
// memory allocation was good
mm_segment_t fs;
ssize_t bytes_read;
off_t lseek_result;
// now fill the buffer
fs = get_fs();
set_fs(get_ds());
bytes_read = original_read(fd, temp_accelerator->buffer, temp_accelerator->buffer_size);
set_fs(fs);
if (bytes_read < 0)
{
// there was an error, stop trying to buffer this file and let
// user space handle this error
// TODO: Alternatively, we could not stop buffering and try again
// the next time.
vfree(temp_accelerator->buffer);
vfree(temp_accelerator);
return (int)bytes_read;
}
else if (bytes_read == 0)
{
// we're already at the end of the file, there's nothing here to buffer
vfree(temp_accelerator->buffer);
vfree(temp_accelerator);
// this will call read again which will return 0 again
// TODO: Is it true that read() will return 0 twice at EOF?
return 0;
}
lseek_result = original_lseek(fd, -bytes_read, SEEK_CUR);
if (lseek_result < 0)
{
// there was an error, let the calling function return it
vfree(temp_accelerator->buffer);
vfree(temp_accelerator);
return (int)lseek_result;
}
temp_accelerator->buffer_length = bytes_read;
temp_accelerator->buffer_offset = 0;
// if there was a previous accelerator, free it now
if (hash_watcher[hash].accelerator)
reset_accelerator(hash);
// everything's fine, register this accelerator
hash_watcher[hash].accelerator = temp_accelerator;
accelerator_count += 1;
}
else
{
// buffer could not be allocated, clean up accelerator
vfree(temp_accelerator);
}
}
return 0;
}
asmlinkage int hook_open(const char* pathname, int flags, int mode)
{
struct file* _file;
hash_t hash;
mm_segment_t fs;
struct stat _stat;
long stat_result;
volatile long fd;
fd = original_open(pathname, flags, mode);
fs = get_fs();
set_fs(get_ds());
stat_result = original_fstat(fd, &_stat);
set_fs(fs);
rcu_read_lock();
_file = fcheck_files(current->files, fd);
rcu_read_unlock();
// we didn't get a file, ignore this
if (!_file)
return fd;
hash = crc16_from_pointer(_file);
// hash slot is already occupied with another file, ignore this
if (hash_watcher[hash].file_pointer)
return fd;
if (stat_result == 0)
{
// stat was successful
off_t filesize = _stat.st_size;
bool is_regular_file = S_ISREG(_stat.st_mode);
bool file_belongs_to_root = _stat.st_uid == 0;
if (!file_belongs_to_root && is_regular_file && filesize >= MIN_FILE_SIZE)
{
// file is a regular file and not too small
reset_watcher(hash);
hash_watcher[hash].file_pointer = _file;
printk(DEBUG_LEVEL "[diob_lkm] [%04x] hook_open(%s) - now watching this file.\n", hash, pathname);
}
}
return fd;
}
asmlinkage int hook_close(int fd)
{
struct file* _file;
hash_t hash;
rcu_read_lock();
_file = fcheck_files(current->files, fd);
rcu_read_unlock();
if (_file)
{
hash = crc16_from_pointer(_file);
if (hash_watcher[hash].file_pointer == _file)
{
printk(DEBUG_LEVEL "[diob_lkm] [%04x] hook_close(fd = %d), global read calls saved: %ld\n", hash, fd, free_read_calls);
reset_watcher(hash);
}
}
return original_close(fd);
}
asmlinkage off_t hook_lseek(int fd, off_t offset, int whence)
{
struct file* _file;
hash_t hash;
rcu_read_lock();
_file = fcheck_files(current->files, fd);
rcu_read_unlock();
if (_file)
{
hash = crc16_from_pointer(_file);
if (hash_watcher[hash].file_pointer == _file)
reset_watcher_stage(hash);
}
return original_lseek(fd, offset, whence);
}
asmlinkage ssize_t hook_read(int fd, void *buf, size_t count)
{
struct file* _file;
hash_t hash;
ssize_t read_result;
// increase use count
try_module_get(THIS_MODULE);
// I know, size_t shouldn't be negative, but this ensures that counts
// is positive and at least 1.
if (count < 1)
goto default_read;
rcu_read_lock();
_file = fcheck_files(current->files, fd);
rcu_read_unlock();
if (!_file)
goto default_read;
hash = crc16_from_pointer(_file);
if (hash_watcher[hash].file_pointer == _file)
{
// we're watching this file!
if (count < MAX_READ_SIZE)
{
// this is a small read, now increase small_read_count and maybe bump stage, too
if (hash_watcher[hash].stage < STAGE_THRESHOLD_COUNT)
{
if (hash_watcher[hash].small_read_count <= STAGE_THRESHOLDS[hash_watcher[hash].stage][0])
{
hash_watcher[hash].small_read_count++;
if (hash_watcher[hash].small_read_count == STAGE_THRESHOLDS[hash_watcher[hash].stage][0] + 1)
{
// we've reached a trigger count, set up buffering and bump stage
int result = setup_accelerator(hash, STAGE_THRESHOLDS[hash_watcher[hash].stage][1] << 10, fd);
if (result == 0)
{
hash_watcher[hash].stage++;
hash_watcher[hash].small_read_count = 0;
}
else
{
// it's an error, return it to the caller
// DISCUSSION: this error comes from lseek(), and we're in read()
// EBADF: If it's a bad file descriptor, OK, pass it on.
// EINVAL: This shouldn't happen because we just read n bytes
// and then rewinded by n bytes.
// EOVERFLOW: If this happens, it's OK, pass it on.
// ESPIPE: If fd is suddenly not a regular file anymore, it's OK, pass it on.
// ENXIO: We don't use no SEEK_DATA or SEEK_HOLE, it can't happen.
// Bottom line: It is ok to return the error code.
if (result < 0)
{
// decrease use count
module_put(THIS_MODULE);
return result;
}
}
}
}
}
}
else
{
// this isn't a small read, disable buffering
// TODO: If this happens too often for a file because it triggers
// buffering and untriggers buffering again and again we should
// probably stop watching that file.
reset_watcher_stage(hash);
}
if (hash_watcher[hash].accelerator)
{
r_fd_accelerator* a = hash_watcher[hash].accelerator;
if (a->buffer_offset == a->buffer_length)
{
// buffer is used up, refill it now
mm_segment_t fs;
ssize_t bytes_read;
// now fill the buffer
fs = get_fs();
set_fs(get_ds());
bytes_read = original_read(fd, a->buffer, a->buffer_size);
set_fs(fs);
if (bytes_read == 0)
{
// we've hit EOF, do nothing and let the original read() report
// the fact
}
else if (bytes_read < 0)
{
// there was an error, stop watching this file and
// pass reading error on to user space
reset_watcher(hash);
// decrease use count
module_put(THIS_MODULE);
return bytes_read;
}
else
{
off_t lseek_result;
lseek_result = original_lseek(fd, -bytes_read, SEEK_CUR);
if (lseek_result < 0)
{
// there was an error, stop watching this file and
// pass lseek error on to user space
reset_watcher(hash);
// decrease use count
module_put(THIS_MODULE);
return (int)lseek_result;
}
a->buffer_length = bytes_read;
a->buffer_offset = 0;
}
}
if (a->buffer_offset < a->buffer_length)
{
// buffer is not yet used up
// return at most the number of requested bytes
// (maybe less if the buffer doesn't have that much stored)
ssize_t copy_bytes = count;
ssize_t copy_bytes_left_over;
if (copy_bytes + a->buffer_offset >= a->buffer_length)
copy_bytes = a->buffer_length - a->buffer_offset;
if (copy_bytes < 0)
copy_bytes = 0;
if (copy_bytes > 0)
{
off_t lseek_result;
// don't serve 0 bytes from cache, it would mean EOF
copy_bytes_left_over = copy_to_user(buf, a->buffer + a->buffer_offset, copy_bytes);
if (copy_bytes_left_over > 0)
{
// Well, we couldn't copy all bytes. How could that happen?
if (copy_bytes_left_over < copy_bytes)
{
// If we copied at least something, return that.
copy_bytes = copy_bytes - copy_bytes_left_over;
}
else if (copy_bytes_left_over == copy_bytes)
{
// If we copied nothing at all, something is wrong,
// stop watching this file and call the default read syscall
reset_watcher(hash);
goto default_read;
}
}
a->buffer_offset += copy_bytes;
// advance file offset
lseek_result = original_lseek(fd, copy_bytes, SEEK_CUR);
if (lseek_result < 0)
{
// there was an error, stop watching this file and
// pass lseek error on to user space
reset_watcher(hash);
// decrease use count
module_put(THIS_MODULE);
return (int)lseek_result;
}
free_read_calls++;
// decrease use count
module_put(THIS_MODULE);
return copy_bytes;
}
}
}
}
default_read:
read_result = original_read(fd, buf, count);
// decrease use count
module_put(THIS_MODULE);
return read_result;
}
asmlinkage ssize_t hook_write(int fd, const void *buf, size_t count)
{
struct file* _file;
hash_t hash;
ssize_t write_result;
// increase use count
try_module_get(THIS_MODULE);
rcu_read_lock();
_file = fcheck_files(current->files, fd);
rcu_read_unlock();
if (_file)
{
hash = crc16_from_pointer(_file);
if (hash_watcher[hash].file_pointer == _file)
reset_watcher_stage(hash);
}
write_result = original_write(fd, buf, count);
// decrease use count
module_put(THIS_MODULE);
return write_result;
}
static int __init diob_init(void)
{
int i;
if (!SYS_CALL_TABLE)
{
printk(KERN_INFO "[diob_lkm] Unable to load module because SYS_CALL_TABLE is not set.\n");
return 1;
}
for (i = 0; i < MAX_HASH; i++)
init_watcher(i);
original_open = SYS_CALL_TABLE[__NR_open];
original_close = SYS_CALL_TABLE[__NR_close];
original_lseek = SYS_CALL_TABLE[__NR_lseek];
original_read = SYS_CALL_TABLE[__NR_read];
original_write = SYS_CALL_TABLE[__NR_write];
original_fstat = SYS_CALL_TABLE[__NR_fstat];
disable_page_protection();
SYS_CALL_TABLE[__NR_open] = hook_open;
SYS_CALL_TABLE[__NR_close] = hook_close;
SYS_CALL_TABLE[__NR_lseek] = hook_lseek;
SYS_CALL_TABLE[__NR_read] = hook_read;
SYS_CALL_TABLE[__NR_write] = hook_write;
enable_page_protection();
printk(KERN_INFO "[diob_lkm] Successfully set up I/O hooks.\n");
return 0;
}
static void __exit diob_cleanup(void)
{
int i;
disable_page_protection();
SYS_CALL_TABLE[__NR_open] = original_open;
SYS_CALL_TABLE[__NR_close] = original_close;
SYS_CALL_TABLE[__NR_lseek] = original_lseek;
SYS_CALL_TABLE[__NR_read] = original_read;
SYS_CALL_TABLE[__NR_write] = original_write;
enable_page_protection();
printk(KERN_INFO "[diob_lkm] Shutting down with %d accelerators, now releasing memory.\n", accelerator_count);
for (i = 0; i < MAX_HASH; i++)
reset_watcher(i);
printk(KERN_INFO "[diob_lkm] Successfully restored I/O hooks.\n");
}
module_init(diob_init);
module_exit(diob_cleanup);