You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Epoch No.: 0 VAL Loss = 0.4397 VAL mIOU = 0.6157
Epoch No.: 1 VAL Loss = 1.0275 VAL mIOU = 0.6647
Epoch No.: 2 VAL Loss = 1.0030 VAL mIOU = 0.6670
Epoch No.: 3 VAL Loss = 0.9768 VAL mIOU = 0.6272
Epoch No.: 4 VAL Loss = 0.9051 VAL mIOU = 0.6783
Epoch No.: 5 VAL Loss = 0.4021 VAL mIOU = 0.6695
Epoch No.: 6 VAL Loss = 0.1785 VAL mIOU = 0.6677
Epoch No.: 7 VAL Loss = 0.2535 VAL mIOU = 0.6786
Epoch No.: 8 VAL Loss = 0.2187 VAL mIOU = 0.6725
Epoch No.: 9 VAL Loss = 0.3153 VAL mIOU = 0.6861
Epoch No.: 10 VAL Loss = 0.3899 VAL mIOU = 0.6830
Epoch No.: 11 VAL Loss = 0.8716 VAL mIOU = 0.6870
Epoch No.: 12 VAL Loss = 0.3529 VAL mIOU = 0.6922
Epoch No.: 13 VAL Loss = 0.5868 VAL mIOU = 0.6852
Epoch No.: 14 VAL Loss = 0.6046 VAL mIOU = 0.6880
Epoch No.: 15 VAL Loss = 0.2905 VAL mIOU = 0.6948
Epoch No.: 16 VAL Loss = 0.1958 VAL mIOU = 0.6816
Epoch No.: 17 VAL Loss = 0.4475 VAL mIOU = 0.6891
Epoch No.: 18 VAL Loss = 0.1578 VAL mIOU = 0.6989
Epoch No.: 19 VAL Loss = 0.2862 VAL mIOU = 0.7041
Epoch No.: 20 VAL Loss = 0.4287 VAL mIOU = 0.7104
Epoch No.: 21 VAL Loss = 0.4995 VAL mIOU = 0.7036
Epoch No.: 22 VAL Loss = 0.4040 VAL mIOU = 0.7047
Epoch No.: 23 VAL Loss = 0.2101 VAL mIOU = 0.7023
Epoch No.: 24 VAL Loss = 0.4608 VAL mIOU = 0.7026
Epoch No.: 25 VAL Loss = 0.3806 VAL mIOU = 0.7033
Epoch No.: 26 VAL Loss = 0.3756 VAL mIOU = 0.7023
Epoch No.: 27 VAL Loss = 0.5805 VAL mIOU = 0.7032
Epoch No.: 28 VAL Loss = 0.3759 VAL mIOU = 0.7094
Epoch No.: 29 VAL Loss = 0.4081 VAL mIOU = 0.6970
Epoch No.: 30 VAL Loss = 0.1993 VAL mIOU = 0.7078
Epoch No.: 31 VAL Loss = 0.3640 VAL mIOU = 0.7071
Epoch No.: 32 VAL Loss = 0.3213 VAL mIOU = 0.7089
Epoch No.: 33 VAL Loss = 0.4832 VAL mIOU = 0.7085
Epoch No.: 34 VAL Loss = 0.2025 VAL mIOU = 0.7097
Epoch No.: 35 VAL Loss = 0.1654 VAL mIOU = 0.7108
Epoch No.: 36 VAL Loss = 0.4561 VAL mIOU = 0.7117
Epoch No.: 37 VAL Loss = 0.4685 VAL mIOU = 0.7139
Epoch No.: 38 VAL Loss = 0.6386 VAL mIOU = 0.7068
Epoch No.: 39 VAL Loss = 0.2288 VAL mIOU = 0.7123
Epoch No.: 40 VAL Loss = 0.1666 VAL mIOU = 0.7111
Epoch No.: 41 VAL Loss = 0.3827 VAL mIOU = 0.7101
Epoch No.: 42 VAL Loss = 0.3823 VAL mIOU = 0.7052
Epoch No.: 43 VAL Loss = 0.2659 VAL mIOU = 0.7132
Epoch No.: 44 VAL Loss = 0.4662 VAL mIOU = 0.7042
Epoch No.: 45 VAL Loss = 0.2377 VAL mIOU = 0.7075
Epoch No.: 46 VAL Loss = 0.4985 VAL mIOU = 0.7081
Epoch No.: 47 VAL Loss = 0.2234 VAL mIOU = 0.7029
Epoch No.: 48 VAL Loss = 0.1307 VAL mIOU = 0.7111
Epoch No.: 49 VAL Loss = 0.2732 VAL mIOU = 0.7076
gemfield@pytorch180-ai1-gemfield:/gemfield/hostpv2/gemfield/ESPNet/log$ cat 105818:train:2021-05-27-15-45:master.log | grep -i miou | grep VAL
Epoch No.: 0 VAL Loss = 0.8419 VAL mIOU = 0.6277
Epoch No.: 1 VAL Loss = 0.9472 VAL mIOU = 0.6566
Epoch No.: 2 VAL Loss = 0.4658 VAL mIOU = 0.6742
Epoch No.: 3 VAL Loss = 0.5841 VAL mIOU = 0.6857
Epoch No.: 4 VAL Loss = 0.5117 VAL mIOU = 0.7004
Epoch No.: 5 VAL Loss = 0.8669 VAL mIOU = 0.6914
Epoch No.: 6 VAL Loss = 0.4079 VAL mIOU = 0.6920
Epoch No.: 7 VAL Loss = 0.3610 VAL mIOU = 0.6955
Epoch No.: 8 VAL Loss = 0.3077 VAL mIOU = 0.6997
Epoch No.: 9 VAL Loss = 0.4553 VAL mIOU = 0.7033
Epoch No.: 10 VAL Loss = 0.4310 VAL mIOU = 0.7100
Epoch No.: 11 VAL Loss = 0.3306 VAL mIOU = 0.6955
Epoch No.: 12 VAL Loss = 0.3901 VAL mIOU = 0.6958
Epoch No.: 13 VAL Loss = 0.3691 VAL mIOU = 0.7121
Epoch No.: 14 VAL Loss = 0.3558 VAL mIOU = 0.7042
Epoch No.: 15 VAL Loss = 0.4140 VAL mIOU = 0.7154
Epoch No.: 16 VAL Loss = 0.2561 VAL mIOU = 0.7108
Epoch No.: 17 VAL Loss = 0.3044 VAL mIOU = 0.7114
Epoch No.: 18 VAL Loss = 0.2137 VAL mIOU = 0.7205
Epoch No.: 19 VAL Loss = 0.2746 VAL mIOU = 0.7124
Epoch No.: 20 VAL Loss = 0.2950 VAL mIOU = 0.7128
Epoch No.: 21 VAL Loss = 0.3457 VAL mIOU = 0.7175
Epoch No.: 22 VAL Loss = 0.3355 VAL mIOU = 0.7162
Epoch No.: 23 VAL Loss = 0.3961 VAL mIOU = 0.7216
Epoch No.: 24 VAL Loss = 0.3026 VAL mIOU = 0.7194
Epoch No.: 25 VAL Loss = 0.3828 VAL mIOU = 0.7188
Epoch No.: 26 VAL Loss = 0.2382 VAL mIOU = 0.7198
Epoch No.: 27 VAL Loss = 0.2619 VAL mIOU = 0.7197
Epoch No.: 28 VAL Loss = 0.5161 VAL mIOU = 0.7191
Epoch No.: 29 VAL Loss = 0.3994 VAL mIOU = 0.7218
Epoch No.: 30 VAL Loss = 0.4033 VAL mIOU = 0.7216
Epoch No.: 31 VAL Loss = 0.2715 VAL mIOU = 0.7235
Epoch No.: 32 VAL Loss = 0.2288 VAL mIOU = 0.7223
Epoch No.: 33 VAL Loss = 0.3293 VAL mIOU = 0.7207
Epoch No.: 34 VAL Loss = 0.5659 VAL mIOU = 0.7262
Epoch No.: 35 VAL Loss = 0.2931 VAL mIOU = 0.7194
Epoch No.: 36 VAL Loss = 0.2304 VAL mIOU = 0.7262
Epoch No.: 37 VAL Loss = 0.3143 VAL mIOU = 0.7269
Epoch No.: 38 VAL Loss = 0.2803 VAL mIOU = 0.7249
Epoch No.: 39 VAL Loss = 0.2798 VAL mIOU = 0.7214
Epoch No.: 40 VAL Loss = 0.2298 VAL mIOU = 0.7224
Epoch No.: 41 VAL Loss = 0.3494 VAL mIOU = 0.7317
Epoch No.: 42 VAL Loss = 0.4371 VAL mIOU = 0.7270
Epoch No.: 43 VAL Loss = 0.2596 VAL mIOU = 0.7270
Epoch No.: 44 VAL Loss = 0.3839 VAL mIOU = 0.7284
Epoch No.: 45 VAL Loss = 0.2850 VAL mIOU = 0.7271
Epoch No.: 46 VAL Loss = 0.1963 VAL mIOU = 0.7279
Epoch No.: 47 VAL Loss = 0.2057 VAL mIOU = 0.7247
Epoch No.: 48 VAL Loss = 0.3545 VAL mIOU = 0.7264
Epoch No.: 49 VAL Loss = 0.2581 VAL mIOU = 0.7220
The text was updated successfully, but these errors were encountered:
不同多尺度的pk
数据集
炼丹参数
Train
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 2.0, 1.75, 1.5, 1.25, 1
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 1.5, 1.25, 1.0, 0.75, 0.5
VAL
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 2.0, 1.75, 1.5, 1.25, 1
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 1.5, 1.25, 1.0, 0.75, 0.5
The text was updated successfully, but these errors were encountered: