forked from hunkimForks/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab-12-3-char-seq-softmax-only.py
66 lines (52 loc) · 2.48 KB
/
lab-12-3-char-seq-softmax-only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Lab 12 Character Sequence Softmax only
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # reproducibility
sample = " if you want you"
idx2char = list(set(sample)) # index -> char
char2idx = {c: i for i, c in enumerate(idx2char)} # char -> idex
# hyper parameters
dic_size = len(char2idx) # RNN input size (one hot size)
rnn_hidden_size = len(char2idx) # RNN output size
num_classes = len(char2idx) # final output size (RNN or softmax, etc.)
batch_size = 1 # one sample data, one batch
sequence_length = len(sample) - 1 # number of lstm rollings (unit #)
learning_rate = 0.1
sample_idx = [char2idx[c] for c in sample] # char to index
x_data = [sample_idx[:-1]] # X data sample (0 ~ n-1) hello: hell
y_data = [sample_idx[1:]] # Y label sample (1 ~ n) hello: ello
X = tf.placeholder(tf.int32, [None, sequence_length]) # X data
Y = tf.placeholder(tf.int32, [None, sequence_length]) # Y label
# flatten the data (ignore batches for now). No effect if the batch size is 1
X_one_hot = tf.one_hot(X, num_classes) # one hot: 1 -> 0 1 0 0 0 0 0 0 0 0
X_for_softmax = tf.reshape(X_one_hot, [-1, rnn_hidden_size])
# softmax layer (rnn_hidden_size -> num_classes)
softmax_w = tf.get_variable("softmax_w", [rnn_hidden_size, num_classes])
softmax_b = tf.get_variable("softmax_b", [num_classes])
outputs = tf.matmul(X_for_softmax, softmax_w) + softmax_b
# expend the data (revive the batches)
outputs = tf.reshape(outputs, [batch_size, sequence_length, num_classes])
weights = tf.ones([batch_size, sequence_length])
# Compute sequence cost/loss
sequence_loss = tf.contrib.seq2seq.sequence_loss(
logits=outputs, targets=Y, weights=weights)
loss = tf.reduce_mean(sequence_loss) # mean all sequence loss
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
prediction = tf.argmax(outputs, axis=2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(3000):
l, _ = sess.run([loss, train], feed_dict={X: x_data, Y: y_data})
result = sess.run(prediction, feed_dict={X: x_data})
# print char using dic
result_str = [idx2char[c] for c in np.squeeze(result)]
print(i, "loss:", l, "Prediction:", ''.join(result_str))
'''
0 loss: 2.29513 Prediction: yu yny y y oyny
1 loss: 2.10156 Prediction: yu ynu y y oynu
2 loss: 1.92344 Prediction: yu you y u you
..
2997 loss: 0.277323 Prediction: yf you yant you
2998 loss: 0.277323 Prediction: yf you yant you
2999 loss: 0.277323 Prediction: yf you yant you
'''