Skip to content

Latest commit

 

History

History
641 lines (528 loc) · 18.5 KB

datasets.md

File metadata and controls

641 lines (528 loc) · 18.5 KB

Built-in Datasets

DataGradients offer a few basic datasets which can help you load your data without needing to provide any additional code.

These datasets contain only the basic functionalities. They are meant to be used within SuperGradients and are not recommended to be used for training (No transform parameter available).

List of Datasets

Detection Datasets


1. COCODetectionDataset

Coco Detection Dataset expects the exact same annotation files and dataset structure os the original Coco dataset.

Expected folder structure

The dataset folder structure should

Example:

dataset_root/
    ├── images/
    │   ├── train2017/
    │   ├── val2017/
    │   └── ...
    └── annotations/
        ├── instances_train2017.json
        ├── instances_val2017.json
        └── ...

Instantiation

To instantiate a dataset object for training data of the year 2017, use the following code:

from data_gradients.datasets.detection import COCODetectionDataset

train_set = COCODetectionDataset(root_dir="<path/to/dataset_root>", split="train", year=2017)
val_set = COCODetectionDataset(root_dir="<path/to/dataset_root>", split="val", year=2017)

source code


2. COCOFormatDetectionDataset

The Coco Format Detection Dataset supports datasets where labels and annotations are stored in COCO format.

Expected folder structure

The dataset folder structure should include at least one sub-directory for images and one JSON file for annotations.

Example:

    dataset_root/
        ├── images/
        │   ├── train/
        │   │   ├── 1.jpg
        │   │   ├── 2.jpg
        │   │   └── ...
        │   ├── test/
        │   │   ├── ...
        │   └── validation/
        │       ├── ...
        └── annotations/
            ├── train.json
            ├── test.json
            └── validation.json

Expected Annotation File Structure

The annotation files must be structured in JSON format following the COCO data format.

Instantiation

dataset_root/
    ├── images/
    │   ├── train/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   ├── val/
    │   │   ├── ...
    │   └── test/
    │       ├── ...
    └── annotations/
        ├── train.json
        ├── test.json
        └── validation.json
from data_gradients.datasets.detection import COCOFormatDetectionDataset

train_set = COCOFormatDetectionDataset(
    root_dir="<path/to/dataset_root>", images_subdir="images/train", annotation_file_path="annotations/train.json"
)
val_set = COCOFormatDetectionDataset(
    root_dir="<path/to/dataset_root>", images_subdir="images/validation", annotation_file_path="annotations/validation.json"
)

source code


3. VOCDetectionDataset

VOC Detection Dataset is a sub-class of the VOCFormatDetectionDataset, but where the folders are structured exactly similarly to the original PascalVOC.

Expected folder structure

Any structure including at least one sub-directory for images and one for xml labels. They can be the same.

Example 1: Separate directories for images and labels

dataset_root/
    ├── VOC2007/
    │   ├── JPEGImages/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   ├── Annotations/
    │   │   ├── 1.xml
    │   │   ├── 2.xml
    │   │   └── ...
    │   └── ImageSets/
    │       └── Main
    │           ├── train.txt
    │           ├── val.txt
    │           ├── train_val.txt
    │           └── ...
    └── VOC2012/
        └── ...

Note: The label file need to be stored in XML format, but the file extension can be different.

Expected label files structure

The label files must be structured in XML format, like in the following example:

<annotation>
    <object>
        <name>chair</name>
        <bndbox>
            <xmin>1</xmin>
            <ymin>213</ymin>
            <xmax>263</xmax>
            <ymax>375</ymax>
        </bndbox>
    </object>
    <object>
        <name>sofa</name>
        <bndbox>
            <xmin>104</xmin>
            <ymin>151</ymin>
            <xmax>334</xmax>
            <ymax>287</ymax>
        </bndbox>
    </object>
</annotation>

Instantiation

Let's take an example where we only have VOC2012

dataset_root/
    └── VOC2012/
        ├── JPEGImages/
        │   ├── 1.jpg
        │   ├── 2.jpg
        │   └── ...
        ├── Annotations/
        │   ├── 1.xml
        │   ├── 2.xml
        │   └── ...
        └── ImageSets/
            └── Main
                ├── train.txt
                └── val.txt
from data_gradients.datasets.detection import VOCDetectionDataset

train_set = VOCDetectionDataset(root_dir="<path/to/dataset_root>", year=2012, split="train")
val_set = VOCDetectionDataset(root_dir="<path/to/dataset_root>", year=2012, split="val")

source code


4. VOCFormatDetectionDataset

The VOC format Detection Dataset supports datasets where labels are stored in XML following according to VOC standard.

Expected folder structure

Any structure including at least one sub-directory for images and one for xml labels. They can be the same.

Example 1: Separate directories for images and labels

    dataset_root/
        ├── images/
        │   ├── train/
        │   │   ├── 1.jpg
        │   │   ├── 2.jpg
        │   │   └── ...
        │   ├── test/
        │   │   ├── ...
        │   └── validation/
        │       ├── ...
        └── labels/
            ├── train/
            │   ├── 1.xml
            │   ├── 2.xml
            │   └── ...
            ├── test/
            │   ├── ...
            └── validation/
                ├── ...

Example 2: Same directory for images and labels

    dataset_root/
        ├── train.txt
        ├── validation.txt
        ├── train/
        │   ├── 1.jpg
        │   ├── 1.xml
        │   ├── 2.jpg
        │   ├── 2.xml
        │   └── ...
        └── validation/
            ├── ...

Note: The label file need to be stored in XML format, but the file extension can be different.

Expected label files structure

The label files must be structured in XML format, like in the following example:

<annotation>
    <object>
        <name>chair</name>
        <bndbox>
            <xmin>1</xmin>
            <ymin>213</ymin>
            <xmax>263</xmax>
            <ymax>375</ymax>
        </bndbox>
    </object>
    <object>
        <name>sofa</name>
        <bndbox>
            <xmin>104</xmin>
            <ymin>151</ymin>
            <xmax>334</xmax>
            <ymax>287</ymax>
        </bndbox>
    </object>
</annotation>

The (optional) config file should include the list image ids to include.

1
5
6
...
34122

The associated images/labels will then be loaded from the images_subdir and labels_subdir. If config_path is not provided, all images will be used.

Instantiation

dataset_root/
    ├── train.txt
    ├── validation.txt
    ├── images/
    │   ├── train/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   ├── test/
    │   │   ├── ...
    │   └── validation/
    │       ├── ...
    └── labels/
        ├── train/
        │   ├── 1.txt
        │   ├── 2.txt
        │   └── ...
        ├── test/
        │   ├── ...
        └── validation/
            ├── ...
from data_gradients.datasets.detection import VOCFormatDetectionDataset

train_set = VOCFormatDetectionDataset(
    root_dir="<path/to/dataset_root>", images_subdir="images/train", labels_subdir="labels/train", config_path="train.txt"
)
val_set = VOCFormatDetectionDataset(
    root_dir="<path/to/dataset_root>", images_subdir="images/validation", labels_subdir="labels/validation", config_path="validation.txt"
)

source code


5. YoloFormatDetectionDataset

The Yolo format Detection Dataset supports any dataset stored in the YOLO format.

Expected folder structure

Any structure including at least one sub-directory for images and one for labels. They can be the same.

Example 1: Separate directories for images and labels

    dataset_root/
        ├── images/
        │   ├── train/
        │   │   ├── 1.jpg
        │   │   ├── 2.jpg
        │   │   └── ...
        │   ├── test/
        │   │   ├── ...
        │   └── validation/
        │       ├── ...
        └── labels/
            ├── train/
            │   ├── 1.txt
            │   ├── 2.txt
            │   └── ...
            ├── test/
            │   ├── ...
            └── validation/
                ├── ...

Example 2: Same directory for images and labels

    dataset_root/
        ├── train/
        │   ├── 1.jpg
        │   ├── 1.txt
        │   ├── 2.jpg
        │   ├── 2.txt
        │   └── ...
        └── validation/
            ├── ...

Expected label files structure

The label files must be structured such that each row represents a bounding box label. Each bounding box is represented by 5 elements: class_id, cx, cy, w, h.

Instantiation

dataset_root/
    ├── images/
    │   ├── train/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   ├── test/
    │   │   ├── ...
    │   └── validation/
    │       ├── ...
    └── labels/
        ├── train/
        │   ├── 1.txt
        │   ├── 2.txt
        │   └── ...
        ├── test/
        │   ├── ...
        └── validation/
            ├── ...
from data_gradients.datasets.detection import YoloFormatDetectionDataset

train_loader = YoloFormatDetectionDataset(root_dir="<path/to/dataset_root>", images_dir="images/train", labels_dir="labels/train")
val_loader = YoloFormatDetectionDataset(root_dir="<path/to/dataset_root>", images_dir="images/validation", labels_dir="labels/validation")

This class does NOT support dataset formats such as Pascal VOC or COCO.

source code


Segmentation Datasets


1. COCOFormatSegmentationDataset

The Coco Format Segmentation Dataset supports datasets where labels and masks are stored in COCO format.

Expected folder structure

The dataset folder structure should include at least one sub-directory for images and one JSON file for annotations.

Example:

dataset_root/
    ├── images/
    │   ├── train/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   ├── test/
    │   │   ├── ...
    │   └── validation/
    │       ├── ...
    └── annotations/
        ├── train.json
        ├── test.json
        └── validation.json

Expected Annotation File Structure

The annotation files must be structured in JSON format following the COCO data format, including mask data.

Instantiation

from data_gradients.datasets.segmentation import COCOFormatSegmentationDataset
train_set = COCOFormatSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    images_subdir="images/train",
    annotation_file_path="annotations/train.json"
)
val_set = COCOFormatSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    images_subdir="images/validation",
    annotation_file_path="annotations/validation.json"
)

source code


2. COCOSegmentationDataset

The COCOSegmentationDataset class is a convenience subclass of the COCOFormatSegmentationDataset that simplifies the instantiation for the widely-used COCO Segmentation Dataset.

This class assumes the default COCO dataset structure and naming conventions. The data should be stored in a specific structure where each split of data (train, val) and year of the dataset is kept in a different directory.

Expected folder structure

dataset_root/
    ├── images/
    │   ├── train2017/
    │   │   ├── 1.jpg
    │   │   ├── 2.jpg
    │   │   └── ...
    │   └── val2017/
    │       ├── 15481.jpg
    │       ├── 15482.jpg
    │       └── ...
    └── annotations/
        ├── instances_train2017.json
        └── instances_val2017.json

Instantiation

from data_gradients.datasets.segmentation import COCOSegmentationDataset
train_set = COCOSegmentationDataset(root_dir="<path/to/dataset_root>", split="train", year=2017)
val_set = COCOSegmentationDataset(root_dir="<path/to/dataset_root>", split="val", year=2017)

source code


3. VOCFormatSegmentationDataset

The VOC format Segmentation Dataset supports datasets where labels are stored as images, with each color in the image representing a different class.

Expected folder structure

Similar to the VOCFormatDetectionDataset, this class also expects certain folder structures. For example:

Example: Separate directories for images and labels

    dataset_root/
        ├── train.txt
        ├── validation.txt
        ├── images/
        │   ├── train/
        │   │   ├── 1.jpg
        │   │   ├── 2.jpg
        │   │   └── ...
        │   ├── test/
        │   │   ├── ...
        │   └── validation/
        │       ├── ...
        └── labels/
            ├── train/
            │   ├── 1.png
            │   ├── 2.png
            │   └── ...
            ├── test/
            │   ├── ...
            └── validation/
                ├── ...

Each label image should be a color image where the color of each pixel corresponds to the class of that pixel.

The (optional) config file should include the list image ids to include.

1
5
6
# And so on ...

The associated images/labels will then be loaded from the images_subdir and labels_subdir. If config_path is not provided, all images will be used.

Instantiation

from data_gradients.datasets.segmentation import VOCFormatSegmentationDataset

color_map = [
    [0, 0, 0],      # class 0
    [255, 0, 0],    # class 1
    [0, 255, 0],    # class 2
    # ...
]

train_set = VOCFormatSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    images_subdir="images/train",
    labels_subdir="labels/train",
    class_names=["background", "class1", "class2"],
    color_map=color_map,
    config_path="train.txt"
)
val_set = VOCFormatSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    images_subdir="images/validation",
    labels_subdir="labels/validation",
    class_names=["background", "class1", "class2"],
    color_map=color_map,
    config_path="validation.txt"
)

source code


4. VOCSegmentationDataset

The VOCSegmentationDataset is specifically tailored for loading PASCAL VOC segmentation datasets.

Expected folder structure

Similar to the VOCFormatSegmentationDataset, this class also expects certain folder structures. The folder structure of the PASCAL VOC dataset is as follows:

    dataset_root/
        ├── VOC2007/
        │   ├── JPEGImages/
        │   ├── SegmentationClass/
        │   └── ImageSets/
        │       └── Segmentation/
        │           ├── train.txt
        │           └── val.txt
        └── VOC2012/
            ├── JPEGImages/
            ├── SegmentationClass/
            └── ImageSets/
                └── Segmentation/
                    ├── train.txt
                    └── val.txt

Each label image should be a color image where the color of each pixel corresponds to the class of that pixel.

Instantiation

from data_gradients.datasets.segmentation import VOCSegmentationDataset

train_set = VOCSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    year=2007,
    split="train",
    verbose=True
)
val_set = VOCSegmentationDataset(
    root_dir="<path/to/dataset_root>",
    year=2007,
    split="val",
    verbose=True
)

source code