-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodel.py
85 lines (71 loc) · 3.11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from collections import defaultdict
class Model():
def __init__(self):
self.data_file = "./Nell995_data/Graph.txt"
self.path_file = "paths_threshold.txt"
self.train_file = "./Nell995_data/train.pairs"
self.nodes = {} # 记录节点的关系信息
self.train_data = defaultdict(list)
self.set_range()
def set_range(self): # 设置关系的值域和节点的关系信息
with open(self.data_file,"r") as f:
datas = f.readlines()
for data in datas:
node_1, relation, node_2 = data.strip().split("\t")
if node_1 not in self.nodes.keys():
tem_node = Node(node_1)
self.nodes[node_1] = tem_node
self.nodes[node_1].add(relation, node_2)
def prob(self, begin, end, relation_path): # 采取后向截断的动态规划
prob = 0
length = len(relation_path)
if length == 1:
if end in self.nodes[begin].info[relation_path[0]]:
prob = 1/len(self.nodes[begin].info[relation_path[0]])
else:
prob = 0
return prob
else:
if self.nodes[begin].info[relation_path[0]] == []:
return 0
else:
for entity in self.nodes[begin].info[relation_path[0]]:
prob += (1/len(self.nodes[begin].info[relation_path[0]])) * self.prob(entity, end, relation_path[1:])
return prob
def get_probs(self): # 完全按照随机游走的公式来计算路径概率
relation_paths = []
with open(self.path_file,"r") as f:
paths = f.readlines()
for path in paths:
relation_paths.append(path.strip().split("\t")[1:])
with open(self.train_file,"r") as f:
datas = f.readlines()
for data in datas:
[node_1, node_2] = data.strip()[0:-3].split(",")
node_1 = node_1.replace("thing$","")
if node_1 not in self.nodes.keys():
print("发现未注册实体:%s"%node_1)
continue
else:
node_2 = node_2.replace("thing$","")
flag = data.strip()[-1]
if flag == "+":
self.train_data[(node_1,node_2)].append(0)
else:
self.train_data[(node_1,node_2)].append(1)
for path in relation_paths:
tem = self.prob(node_1,node_2,path)
self.train_data[(node_1, node_2)].append(tem)
with open("train_data.txt","w") as f:
for key in self.train_data:
f.write(str(key)+"\t"+str(self.train_data[key])+"\n")
return
class Node:
def __init__(self,NodeName):
self.name = NodeName
self.info = defaultdict(list) # 记录从实体NodeName出发,经关系relation,能到达的实体
def add(self,relation, subnode):
self.info[relation].append(subnode)
if __name__ == "__main__":
model = Model()
model.get_probs()