-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathROSComms.c
444 lines (387 loc) · 19.2 KB
/
ROSComms.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#include "ROSComms.h"
#include "global.h"
#include "common.h"
#include "queue.h"
#include "FreeRTOS.h"
#include "message_buffer.h"
#include "task.h"
#include "timers.h"
#include "cJSON.h"
#include <stdarg.h>
#include <math.h>
#define cJSON_GetInt(object, key) (cJSON_GetObjectItem(object, key) ? cJSON_GetObjectItem(object, key)->valueint : 0)
#define cJSON_GetStr(object, key) (cJSON_GetObjectItem(object, key) ? cJSON_GetObjectItem(object, key)->valuestring : "")
//#define cJSON_GetObj(object, key) (cJSON_GetObjectItem(object, key) ? cJSON_GetObjectItem(object, key) : cJSON_CreateObject())
#define cJSON_GetObj(object, key) (cJSON_GetObjectItem(object, key) ? cJSON_GetObjectItem(object, key) : NULL)
#undef EOF
#define NOP 0x00
#define SOF 0x01
#define EOF 0xFF
#define buflen 250
uint8_t SSP0_rxpos = 0;
uint8_t SSP0_rxbuf[buflen+1];
void SSP0_IRQHandler(void) { // SSP0_IRQn 14 (lpc1788)
// Disable interrupts and clear the interrupt mask
portDISABLE_INTERRUPTS();
LPC_SSP0->IMSC &= ~(1 << 2);
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
uint8_t rxByte; // Received byte from SPI
uint8_t txByte = NOP; // Byte to transmit via SPI
// Process received data while Receive FIFO is not empty
while (LPC_SSP0->SR & (1 << 2)) {
rxByte = LPC_SSP0->DR; // Read the received byte
// Transmit the byte
if (xMessageBufferReceiveFromISR(SPI0TxMessageBuffer, &txByte, 1, &xHigherPriorityTaskWoken) == pdFAIL) {
txByte=NOP;
}
LPC_SSP0->DR = txByte;
// Process the received byte
if (rxByte == SOF) { // If start of frame
// Reset the rxpos index to 0
SSP0_rxpos = 0;
} else if (rxByte == EOF || (SSP0_rxpos >= buflen - 1)) {
SSP0_rxbuf[SSP0_rxpos++] = 0;
// Send received data to the RxMessageBuffer
if (SSP0_rxpos > 0) xMessageBufferSendFromISR(SPI0RxMessageBuffer, &SSP0_rxbuf, SSP0_rxpos, &xHigherPriorityTaskWoken);
SSP0_rxpos = 0;
} else if (rxByte != NOP) { // If regular data byte
SSP0_rxbuf[SSP0_rxpos++] = rxByte; // Add received byte to the rxbuf
}
// Wait for the transmission to complete
// Do we really need to wait?
//while (!(LPC_SSP0->SR & (1 << 4)));
}
// Re-enable the interrupt mask and enable interrupts
LPC_SSP0->IMSC |= (1 << 2);
portENABLE_INTERRUPTS();
// Yield from ISR if a higher priority task was woken
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
void SPI0TxQueue_Task(void *pvParameters) {
char local_txbuf[buflen+1];
char txByte;
size_t txpos;
while (1) {
// Check if the SPI0TxMessageBuffer has room for message
if (xMessageBufferSpaceAvailable(SPI0TxMessageBuffer) > buflen + 2) {
// Receive data from the TxMessageBuffer
if (xQueueReceive(RosTxQueue, local_txbuf, xDelay1) > 0) {
// Enqueue the SOF byte
txByte = SOF;
xMessageBufferSend(SPI0TxMessageBuffer, &txByte, 1, xDelay1);
// Enqueue the received data
for (txpos = 0; txpos < strnlen(local_txbuf, buflen); txpos++) {
xMessageBufferSend(SPI0TxMessageBuffer, &local_txbuf[txpos], 1, xDelay1);
}
// Enqueue the EOF byte
txByte = EOF;
xMessageBufferSend(SPI0TxMessageBuffer, &txByte, 1, xDelay1);
}
}
vTaskDelay(pdMS_TO_TICKS(5));
}
}
void ROSCommsRx_Task(void *pvParameters) {
char local_rxbuf[buflen+1];
for (;;) {
while (xMessageBufferReceive(SPI0RxMessageBuffer, &local_rxbuf, buflen, xDelay10)) {
wdt_reset();
cJSON* root = cJSON_Parse(local_rxbuf);
if (root != NULL) {
cJSON* command = cJSON_GetArrayItem(root, 0);
if (command != NULL) {
if (!strcasecmp(command->string, "ping")) {
cJSON* REQ = cJSON_GetObj(root, "ping");
if (REQ != NULL) {
/*xJSONMessageType JSONMsg = {"pong", {0}};
strcpy(JSONMsg.value, cJSON_CreateNumber(cJSON_GetInt(REQ, "count")));
xQueueSend(xJSONMessageQueue, &JSONMsg, xDelay25);*/
//debug("Pong! last: %i", watchdogSPI);
char local_txbuf[buflen+1];
cJSON* msg = cJSON_CreateObject();
cJSON* obj = cJSON_CreateObject();
cJSON_AddItemToObject(obj, "Count", cJSON_CreateNumber(cJSON_GetInt(REQ, "count")));
cJSON_AddItemToObject(msg, "pong", obj);
cJSON_PrintPreallocated(msg, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay25);
cJSON_Delete(msg);
sensorMsg.watchdogSPI=0;
}
} else if (!strcasecmp(command->string, "MOTORREQ_DISABLE")) {
cJSON* REQ = cJSON_GetObj(root, "MOTORREQ_DISABLE");
if (REQ != NULL) {
xMotorMsgType MotorMsg;
MotorMsg.action = MOTORREQ_DISABLE;
MotorMsg.pwm.left = 0;
MotorMsg.pwm.right = 0;
MotorMsg.pwm.blade = 0;
xQueueSend(xMotorMsgQueue, &MotorMsg, xDelay25);
}
} else if (!strcasecmp(command->string, "MOTORREQ_ENABLE")) {
cJSON* REQ = cJSON_GetObj(root, "MOTORREQ_ENABLE");
if (REQ != NULL) {
xMotorMsgType MotorMsg;
MotorMsg.action = MOTORREQ_ENABLE;
MotorMsg.pwm.left = 0;
MotorMsg.pwm.right = 0;
MotorMsg.pwm.blade = 0;
xQueueSend(xMotorMsgQueue, &MotorMsg, xDelay25);
}
} else if (!strcasecmp(command->string, "MOTORREQ_SETSPEED")) {
cJSON* REQ = cJSON_GetObj(root, "MOTORREQ_SETSPEED");
if (REQ != NULL) {
xMotorMsgType MotorMsg;
MotorMsg.action = MOTORREQ_SETSPEED;
MotorMsg.pwm.left = cJSON_GetInt(REQ, "left");
MotorMsg.pwm.right = cJSON_GetInt(REQ, "right");
MotorMsg.pwm.blade = cJSON_GetInt(REQ, "mow");
//debug("setpwm: l%d r%d m%d\n", MotorMsg.pwm.left, MotorMsg.pwm.right, MotorMsg.pwm.blade);
xQueueSend(xMotorMsgQueue, &MotorMsg, xDelay25);
}
} else {
debug("Unknown command: %s", command->string);
}
}
cJSON_Delete(root); // Will also delete children.
}
memset(local_rxbuf, 0, buflen);
}
vTaskDelay(xDelay10);
}
}
void RosCommsTx_Timer(TimerHandle_t xTimer) {
}
/*
void DMA_IRQHandler(void) {
// Check if DMA channel 0 (TX) has completed the transfer
if (LPC_GPDMA->IntTCStat & (1 << 0)) {
// Clear the interrupt
LPC_GPDMA->IntTCClear = 1 << 0;
// Handle the completion of the DMA transfer (if needed)
}
}
void spi0_Transmit_DMA(uint8_t *data, size_t length) {
// Configure DMA channel 0 for SSP0 TX
LPC_GPDMACH0->CSrcAddr = (uint32_t)data;
LPC_GPDMACH0->CDestAddr = (uint32_t)&LPC_SSP0->DR;
LPC_GPDMACH0->CControl = (length << 0) | (1 << 18) | (1 << 21) | (1 << 31); // Transfer length, SSP0 TX, Memory-to-Peripheral
LPC_GPDMACH0->CConfig = (1 << 0) | (1 << 1) | (10 << 6) | (1 << 11); // Enable channel, SSP0 TX
LPC_GPDMACH0->CConfig |= (1 << 0);
// Clear DMA interrupts
//LPC_GPDMA->IntTCClear = 1 << 0; // Clear DMA channel 0 interrupt
}
*/
void ROSCommsTx_Task(void *pvParameters) {
TickType_t xLastWakeTime;
const TickType_t xFrequency = pdMS_TO_TICKS(50);
vTaskDelay(xDelay1000);
wdt_reset();
ROScomms_Init();
xBoundaryMsgType BoundaryMsg;
HeapStats_t xHeapStats;
NVIC_SetPriority(SSP0_IRQn, configMAX_SYSCALL_INTERRUPT_PRIORITY);
LPC_SSP0->IMSC |= (1 << 2); // 1 RTIM 2 RXIM Rx FIFO is at least half full. 3 TXIM Tx FIFO is at least half empty.
// Software should write the appropriate control information to the other SSP registers and interrupt controller registers, before setting this bit.
LPC_SSP0->CR1 |= (1 << 1); // SSP Enable.
NVIC_EnableIRQ(SSP0_IRQn);
char local_txbuf[buflen+1];
uint16_t counter = 0;
uint8_t printmsg = 0;
debug("ROSComms started...");
//debug("CoreClk: %i Perclk: %i PCLKDIV: %i", SystemCoreClock, PeripheralClock, (LPC_SC->PCLKSEL & 0x1f));
/*
// Enable GPDMA power
LPC_SC->PCONP |= (1 << 29);
// Enable GPDMA controller
LPC_SSP0->DMACR = 0x02;
// Clear DMA interrupts
//LPC_GPDMA->IntTCClear = 0xFF;
//LPC_GPDMA->IntErrClr = 0xFF;
uint8_t test_message[] = "xHello, DMA SPI!x";
// test_message[0]=0x01;
// test_message[17]=0xff;
// test_message[18]=0x00;
spi0_Transmit_DMA(test_message, sizeof(test_message));
while (!(LPC_GPDMACH0->CConfig & (1 << 17))) {
// Wait until terminal count request (DMA transfer complete)
}
LPC_GPDMA->IntTCClear = (1 << 0);
*/
// Check if reset was caused by WDT
if(LPC_SC->RSID & (1 << 2)) {
debug("!!!! Reset was caused by watchdog timer !!!!");
// Clear the watchdog reset flag
LPC_SC->RSID |= (1 << 2);
}
xLastWakeTime = xTaskGetTickCount();
for (;;) {
vTaskDelayUntil(&xLastWakeTime, xFrequency);
xJSONMessageType JSONMsg;
if (xQueueReceive(xJSONMessageQueue, &JSONMsg, 0) == pdPASS) {
cJSON* root = cJSON_CreateObject();
cJSON_AddStringToObject(root, JSONMsg.topic, JSONMsg.value);
cJSON_PrintPreallocated(root, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
cJSON_Delete(root);
}
/*
// IMU Data:
cJSON* root = cJSON_CreateObject();
cJSON* obj = cJSON_CreateObject();
cJSON_AddItemToObject(obj, "Yaw", cJSON_CreateNumber(round(sensorMsg.gyroYaw * 10000)));
cJSON_AddItemToObject(obj, "Pitch", cJSON_CreateNumber(round(sensorMsg.gyroPitch * 10000)));
cJSON_AddItemToObject(obj, "Roll", cJSON_CreateNumber(round(sensorMsg.gyroRoll * 10000)));
cJSON_AddItemToObject(obj, "AccX", cJSON_CreateNumber(round(sensorMsg.accelX)));
cJSON_AddItemToObject(obj, "AccY", cJSON_CreateNumber(round(sensorMsg.accelY)));
cJSON_AddItemToObject(obj, "AccZ", cJSON_CreateNumber(round(sensorMsg.accelZ)));
cJSON_AddItemToObject(root, "I2C_IMU", obj);
cJSON_PrintPreallocated(root, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
cJSON_Delete(root);
*/
cJSON* root = cJSON_CreateObject();
cJSON* obj = cJSON_CreateObject();
cJSON_AddItemToObject(obj, "Left", cJSON_CreateNumber(sensorMsg.motorPulseLeft));
cJSON_AddItemToObject(obj, "Right", cJSON_CreateNumber(sensorMsg.motorPulseRight));
cJSON_AddItemToObject(obj, "Mow", cJSON_CreateNumber(sensorMsg.motorPulseBlade));
cJSON_AddItemToObject(obj, "DirLeft", cJSON_CreateNumber(!GPIO_CHK_PIN(MOTOR_LEFT_FORWARD)));
cJSON_AddItemToObject(obj, "DirRight", cJSON_CreateNumber(GPIO_CHK_PIN(MOTOR_RIGHT_FORWARD)));
cJSON_AddItemToObject(obj, "Emergancy", cJSON_CreateNumber(sensorMsg.emergancyStop));
cJSON_AddItemToObject(obj, "BlockForward", cJSON_CreateNumber(sensorMsg.blockForward));
cJSON_AddItemToObject(root, "MotorPulse", obj);
cJSON_PrintPreallocated(root, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
cJSON_Delete(root);
// Boundary wire data:
if (xQueueReceive(xBoundaryMsgQueue, &BoundaryMsg, 0) == pdPASS) {
root = cJSON_CreateObject();
obj = cJSON_CreateObject();
cJSON_AddItemToObject(obj, "sleft", cJSON_CreateNumber(atoi(BoundaryMsg.sleft)));
cJSON_AddItemToObject(obj, "sright", cJSON_CreateNumber(atoi(BoundaryMsg.sright)));
cJSON_AddItemToObject(obj, "nleft", cJSON_CreateNumber(atoi(BoundaryMsg.nleft)));
cJSON_AddItemToObject(obj, "nright", cJSON_CreateNumber(atoi(BoundaryMsg.nright)));
cJSON_AddItemToObject(root, "Boundary", obj);
cJSON_PrintPreallocated(root, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
cJSON_Delete(root);
}
if (!(counter % 5)) {
root = cJSON_CreateObject();
obj = cJSON_CreateObject();
switch (printmsg) {
case 1:
cJSON_AddItemToObject(obj, "mV", cJSON_CreateNumber(sensorMsg.batteryVolt));
cJSON_AddItemToObject(obj, "mA", cJSON_CreateNumber(sensorMsg.batteryChargeCurrent));
cJSON_AddItemToObject(obj, "Temp", cJSON_CreateNumber(sensorMsg.batteryTemp));
cJSON_AddItemToObject(obj, "CellLow", cJSON_CreateNumber(sensorMsg.batteryCellLow));
cJSON_AddItemToObject(obj, "CellHigh", cJSON_CreateNumber(sensorMsg.batteryCellHigh));
cJSON_AddItemToObject(obj, "InCharger", cJSON_CreateNumber(sensorMsg.inCharger));
cJSON_AddItemToObject(root, "Battery", obj);
break;
case 2:
cJSON_AddItemToObject(obj, "Stuck", cJSON_CreateNumber(sensorMsg.stuck));
cJSON_AddItemToObject(obj, "Stuck2", cJSON_CreateNumber(sensorMsg.stuck2));
cJSON_AddItemToObject(obj, "Door", cJSON_CreateNumber(sensorMsg.door));
cJSON_AddItemToObject(obj, "Door2", cJSON_CreateNumber(sensorMsg.door2));
cJSON_AddItemToObject(obj, "Lift", cJSON_CreateNumber(sensorMsg.lift));
cJSON_AddItemToObject(obj, "Collision", cJSON_CreateNumber(sensorMsg.collision));
cJSON_AddItemToObject(obj, "Stop", cJSON_CreateNumber(sensorMsg.stop));
cJSON_AddItemToObject(obj, "Rain", cJSON_CreateNumber(sensorMsg.rain));
cJSON_AddItemToObject(root, "Digital", obj);
break;
case 3:
cJSON_AddItemToObject(obj, "Rain", cJSON_CreateNumber(sensorMsg.rainAnalog));
cJSON_AddItemToObject(obj, "boardTemp", cJSON_CreateNumber(sensorMsg.boardTemp)); // RAW
cJSON_AddItemToObject(root, "Analog", obj);
break;
case 4:
cJSON_AddItemToObject(obj, "Left", cJSON_CreateNumber(LPC_PWM1->MR4));
cJSON_AddItemToObject(obj, "Right", cJSON_CreateNumber(LPC_PWM1->MR5));
cJSON_AddItemToObject(obj, "Mow", cJSON_CreateNumber(LPC_PWM1->MR1));
cJSON_AddItemToObject(root, "MotorPWM", obj);
break;
/*case 5:
cJSON_AddItemToObject(obj, "Left", cJSON_CreateNumber(sensorMsg.motorpulseleft));
cJSON_AddItemToObject(obj, "Right", cJSON_CreateNumber(sensorMsg.motorpulseright));
cJSON_AddItemToObject(obj, "Mow", cJSON_CreateNumber(sensorMsg.motorpulseblade));
cJSON_AddItemToObject(root, "MotorPulse", obj);
break;*/
case 5:
cJSON_AddItemToObject(obj, "Left", cJSON_CreateNumber(sensorMsg.motorCurrentLeft));
cJSON_AddItemToObject(obj, "Right", cJSON_CreateNumber(sensorMsg.motorCurrentRight));
cJSON_AddItemToObject(obj, "Mow", cJSON_CreateNumber(sensorMsg.motorCurrentBlade));
cJSON_AddItemToObject(root, "MotorCurrent", obj);
printmsg = 0;
break;
default:
printmsg = 0;
break;
/*case 7:
cJSON_AddItemToObject(obj, "QueueWait", cJSON_CreateNumber(uxQueueMessagesWaiting(RosTxQueue)));
cJSON_AddItemToObject(obj, "TxFree", cJSON_CreateNumber(xMessageBufferSpacesAvailable(SPI0TxMessageBuffer)));
cJSON_AddItemToObject(obj, "RxFree", cJSON_CreateNumber(xMessageBufferSpacesAvailable(SPI0RxMessageBuffer)));
cJSON_AddItemToObject(obj, "FreeH", cJSON_CreateNumber(xPortGetFreeHeapSize()));
cJSON_AddItemToObject(root, "DEBUG", obj);
break;
case 8:
cJSON_AddItemToObject(obj, "AccelX", cJSON_CreateNumber(sensorMsg.AccelX));
cJSON_AddItemToObject(obj, "AccelY", cJSON_CreateNumber(sensorMsg.AccelY));
cJSON_AddItemToObject(obj, "AccelZ", cJSON_CreateNumber(sensorMsg.AccelZ));
cJSON_AddItemToObject(root, "I2C_MMA8452Q", obj);
break;
case 9:
int spibus = SystemCoreClock / (LPC_SC->PCLKSEL * (LPC_SSP0->CPSR * (1 + (LPC_SSP0->CR0 >> 8))));
cJSON_AddItemToObject(obj, "CpuClk", cJSON_CreateNumber(SystemCoreClock));
cJSON_AddItemToObject(obj, "SpiClk", cJSON_CreateNumber(spibus));
cJSON_AddItemToObject(root, "Debug", obj);
printmsg = 0;
break;*/
}
printmsg++;
cJSON_PrintPreallocated(root, local_txbuf, buflen, false);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
cJSON_Delete(root);
}
/*if (!(counter % 1000)) {
int len = 0;
for ( int i = 0; i < taskcounter; i++) {
len = sprintf(local_txbuf,"Task %i:%s StackHigh: %li ",i , pcTaskGetName(xHandle[i]), uxTaskGetStackHighWaterMark(xHandle[i]));
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
}
vPortGetHeapStats( &xHeapStats );
len = sprintf(local_txbuf, "HeapStats: Free:%i (min: %i) Allocs: %i Frees: %i", xHeapStats.xAvailableHeapSpaceInBytes,
xHeapStats.xMinimumEverFreeBytesRemaining, xHeapStats.xNumberOfSuccessfulAllocations, xHeapStats.xNumberOfSuccessfulFrees);
xQueueSend(RosTxQueue, local_txbuf, xDelay10);
}*/
counter++;
int stack = uxTaskGetStackHighWaterMark(NULL);
if (stack < 50) debug("Task ROSComms_Task has %u words left in stack.", stack);
}
}
void ROSCommsTest_Task(void *pvParameters) {
}
void debug( const char* format, ... ) {
char buf[buflen+1];
uint8_t len;
va_list args;
len = sprintf( buf, "DEBUG: " );
va_start( args, format );
len += vsprintf( buf + len, format, args );
va_end( args );
//len += sprintf( buf + len, "\n" );
buf[len++]=0;
xQueueSend(RosTxQueue, buf, xDelay10);
}
#pragma import(__use_no_semihosting_swi)
__attribute__((used)) int _write(int fd, char *ptr, int len) {
int i = 0;
/*char ch;
while (*ptr && (i < len)) {
ch = *ptr;
xxxxx -- xMessageBufferSend(SPI0TxMessageBuffer, (char*)&ch, 1, xDelay1);
NOT TASK/THREAD SAFE! Crashes! Fill a buffer and xQueueSend to RosTxQueue
i++;
ptr++;
}*/
return i;
}