forked from costapt/vess2ret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
673 lines (607 loc) · 31.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
__doc__ = """The model definitions for the pix2pix network taken from the
retina repository at https://github.com/costapt/vess2ret
"""
import os
import keras
from keras import backend as K
from keras import objectives
from keras.layers import Input, merge
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Convolution2D, Deconvolution2D
from keras.layers.core import Activation, Dropout
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.optimizers import Adam
KERAS_2 = keras.__version__[0] == '2'
try:
# keras 2 imports
from keras.layers.convolutional import Conv2DTranspose
from keras.layers.merge import Concatenate
except ImportError:
print("Keras 2 layers could not be imported defaulting to keras1")
KERAS_2 = False
K.set_image_dim_ordering('th')
def concatenate_layers(inputs, concat_axis, mode='concat'):
if KERAS_2:
assert mode == 'concat', "Only concatenation is supported in this wrapper"
return Concatenate(axis=concat_axis)(inputs)
else:
return merge(inputs=inputs, concat_axis=concat_axis, mode=mode)
def Convolution(f, k=3, s=2, border_mode='same', **kwargs):
"""Convenience method for Convolutions."""
if KERAS_2:
return Convolution2D(f,
kernel_size=(k, k),
padding=border_mode,
strides=(s, s),
**kwargs)
else:
return Convolution2D(f, k, k, border_mode=border_mode,
subsample=(s, s),
**kwargs)
def Deconvolution(f, output_shape, k=2, s=2, **kwargs):
"""Convenience method for Transposed Convolutions."""
if KERAS_2:
return Conv2DTranspose(f,
kernel_size=(k, k),
output_shape=output_shape,
strides=(s, s),
data_format=K.image_data_format(),
**kwargs)
else:
return Deconvolution2D(f, k, k, output_shape=output_shape,
subsample=(s, s), **kwargs)
def BatchNorm(mode=2, axis=1, **kwargs):
"""Convenience method for BatchNormalization layers."""
if KERAS_2:
return BatchNormalization(axis=axis, **kwargs)
else:
return BatchNormalization(mode=2,axis=axis, **kwargs)
def g_unet(in_ch, out_ch, nf, batch_size=1, is_binary=False, name='unet'):
# type: (int, int, int, int, bool, str) -> keras.models.Model
"""Define a U-Net.
Input has shape in_ch x 512 x 512
Parameters:
- in_ch: the number of input channels;
- out_ch: the number of output channels;
- nf: the number of filters of the first layer;
- is_binary: if is_binary is true, the last layer is followed by a sigmoid
activation function, otherwise, a tanh is used.
>>> K.set_image_dim_ordering('th')
>>> K.image_data_format()
'channels_first'
>>> unet = g_unet(1, 2, 3, batch_size=5, is_binary=True)
TheanoShapedU-NET
>>> for ilay in unet.layers: ilay.name='_'.join(ilay.name.split('_')[:-1]) # remove layer id
>>> unet.summary() #doctest: +NORMALIZE_WHITESPACE
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 1, 512, 512) 0
_________________________________________________________________
conv2d (Conv2D) (None, 3, 256, 256) 30
_________________________________________________________________
batch_normalization (BatchNo (None, 3, 256, 256) 12
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 3, 256, 256) 0
_________________________________________________________________
conv2d (Conv2D) (None, 6, 128, 128) 168
_________________________________________________________________
batch_normalization (BatchNo (None, 6, 128, 128) 24
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 6, 128, 128) 0
_________________________________________________________________
conv2d (Conv2D) (None, 12, 64, 64) 660
_________________________________________________________________
batch_normalization (BatchNo (None, 12, 64, 64) 48
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 12, 64, 64) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 32, 32) 2616
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 32, 32) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 32, 32) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 16, 16) 5208
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 16, 16) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 16, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 8, 8) 5208
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 8, 8) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 8, 8) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 4, 4) 5208
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 4, 4) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 4, 4) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 2, 2) 5208
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 2, 2) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 2, 2) 0
_________________________________________________________________
conv2d (Conv2D) (None, 24, 1, 1) 2328
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 1, 1) 96
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 1, 1) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 24, 2, 2) 2328
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 2, 2) 96
_________________________________________________________________
dropout (Dropout) (None, 24, 2, 2) 0
_________________________________________________________________
concatenate (Concatenate) (None, 48, 2, 2) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 48, 2, 2) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 24, 4, 4) 4632
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 4, 4) 96
_________________________________________________________________
dropout (Dropout) (None, 24, 4, 4) 0
_________________________________________________________________
concatenate (Concatenate) (None, 48, 4, 4) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 48, 4, 4) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 24, 8, 8) 4632
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 8, 8) 96
_________________________________________________________________
dropout (Dropout) (None, 24, 8, 8) 0
_________________________________________________________________
concatenate (Concatenate) (None, 48, 8, 8) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 48, 8, 8) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 24, 16, 16) 4632
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 16, 16) 96
_________________________________________________________________
concatenate (Concatenate) (None, 48, 16, 16) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 48, 16, 16) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 24, 32, 32) 4632
_________________________________________________________________
batch_normalization (BatchNo (None, 24, 32, 32) 96
_________________________________________________________________
concatenate (Concatenate) (None, 48, 32, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 48, 32, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 12, 64, 64) 2316
_________________________________________________________________
batch_normalization (BatchNo (None, 12, 64, 64) 48
_________________________________________________________________
concatenate (Concatenate) (None, 24, 64, 64) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 24, 64, 64) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 6, 128, 128) 582
_________________________________________________________________
batch_normalization (BatchNo (None, 6, 128, 128) 24
_________________________________________________________________
concatenate (Concatenate) (None, 12, 128, 128) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 12, 128, 128) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 3, 256, 256) 147
_________________________________________________________________
batch_normalization (BatchNo (None, 3, 256, 256) 12
_________________________________________________________________
concatenate (Concatenate) (None, 6, 256, 256) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 6, 256, 256) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 2, 512, 512) 50
_________________________________________________________________
activation (Activation) (None, 2, 512, 512) 0
=================================================================
Total params: 51,809.0
Trainable params: 51,197.0
Non-trainable params: 612.0
_________________________________________________________________
>>> K.set_image_dim_ordering('tf')
>>> K.image_data_format()
'channels_last'
>>> unet2=g_unet(3, 4, 2, batch_size=7, is_binary=False)
TensorflowShapedU-NET
>>> for ilay in unet2.layers: ilay.name='_'.join(ilay.name.split('_')[:-1]) # remove layer id
>>> unet2.summary() #doctest: +NORMALIZE_WHITESPACE
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 512, 512, 3) 0
_________________________________________________________________
conv2d (Conv2D) (None, 256, 256, 2) 56
_________________________________________________________________
batch_normalization (BatchNo (None, 256, 256, 2) 1024
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 256, 256, 2) 0
_________________________________________________________________
conv2d (Conv2D) (None, 128, 128, 4) 76
_________________________________________________________________
batch_normalization (BatchNo (None, 128, 128, 4) 512
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 128, 128, 4) 0
_________________________________________________________________
conv2d (Conv2D) (None, 64, 64, 8) 296
_________________________________________________________________
batch_normalization (BatchNo (None, 64, 64, 8) 256
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 64, 64, 8) 0
_________________________________________________________________
conv2d (Conv2D) (None, 32, 32, 16) 1168
_________________________________________________________________
batch_normalization (BatchNo (None, 32, 32, 16) 128
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 32, 32, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 16, 16, 16) 2320
_________________________________________________________________
batch_normalization (BatchNo (None, 16, 16, 16) 64
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 16, 16, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 8, 8, 16) 2320
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 16) 32
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 8, 8, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 4, 4, 16) 2320
_________________________________________________________________
batch_normalization (BatchNo (None, 4, 4, 16) 16
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 4, 4, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 2, 2, 16) 2320
_________________________________________________________________
batch_normalization (BatchNo (None, 2, 2, 16) 8
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 2, 2, 16) 0
_________________________________________________________________
conv2d (Conv2D) (None, 1, 1, 16) 1040
_________________________________________________________________
batch_normalization (BatchNo (None, 1, 1, 16) 4
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 1, 1, 16) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 2, 2, 16) 1040
_________________________________________________________________
batch_normalization (BatchNo (None, 2, 2, 16) 8
_________________________________________________________________
dropout (Dropout) (None, 2, 2, 16) 0
_________________________________________________________________
concatenate (Concatenate) (None, 2, 2, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 2, 2, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 4, 4, 16) 2064
_________________________________________________________________
batch_normalization (BatchNo (None, 4, 4, 16) 16
_________________________________________________________________
dropout (Dropout) (None, 4, 4, 16) 0
_________________________________________________________________
concatenate (Concatenate) (None, 4, 4, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 4, 4, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 8, 8, 16) 2064
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 16) 32
_________________________________________________________________
dropout (Dropout) (None, 8, 8, 16) 0
_________________________________________________________________
concatenate (Concatenate) (None, 8, 8, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 8, 8, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 16, 16, 16) 2064
_________________________________________________________________
batch_normalization (BatchNo (None, 16, 16, 16) 64
_________________________________________________________________
concatenate (Concatenate) (None, 16, 16, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 16, 16, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 32, 32, 16) 2064
_________________________________________________________________
batch_normalization (BatchNo (None, 32, 32, 16) 128
_________________________________________________________________
concatenate (Concatenate) (None, 32, 32, 32) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 32, 32, 32) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 64, 64, 8) 1032
_________________________________________________________________
batch_normalization (BatchNo (None, 64, 64, 8) 256
_________________________________________________________________
concatenate (Concatenate) (None, 64, 64, 16) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 64, 64, 16) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 128, 128, 4) 260
_________________________________________________________________
batch_normalization (BatchNo (None, 128, 128, 4) 512
_________________________________________________________________
concatenate (Concatenate) (None, 128, 128, 8) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 128, 128, 8) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 256, 256, 2) 66
_________________________________________________________________
batch_normalization (BatchNo (None, 256, 256, 2) 1024
_________________________________________________________________
concatenate (Concatenate) (None, 256, 256, 4) 0
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 256, 256, 4) 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 512, 512, 4) 68
_________________________________________________________________
activation (Activation) (None, 512, 512, 4) 0
=================================================================
Total params: 26,722.0
Trainable params: 24,680.0
Non-trainable params: 2,042.0
_________________________________________________________________
"""
merge_params = {
'mode': 'concat',
'concat_axis': 1
}
if K.image_dim_ordering() == 'th':
print('TheanoShapedU-NET')
i = Input(shape=(in_ch, 512, 512))
def get_deconv_shape(samples, channels, x_dim, y_dim):
return samples, channels, x_dim, y_dim
elif K.image_dim_ordering() == 'tf':
i = Input(shape=(512, 512, in_ch))
print('TensorflowShapedU-NET')
def get_deconv_shape(samples, channels, x_dim, y_dim):
return samples, x_dim, y_dim, channels
merge_params['concat_axis'] = 3
else:
raise ValueError(
'Keras dimension ordering not supported: {}'.format(
K.image_dim_ordering()))
# in_ch x 512 x 512
conv1 = Convolution(nf)(i)
conv1 = BatchNorm()(conv1)
x = LeakyReLU(0.2)(conv1)
# nf x 256 x 256
conv2 = Convolution(nf * 2)(x)
conv2 = BatchNorm()(conv2)
x = LeakyReLU(0.2)(conv2)
# nf*2 x 128 x 128
conv3 = Convolution(nf * 4)(x)
conv3 = BatchNorm()(conv3)
x = LeakyReLU(0.2)(conv3)
# nf*4 x 64 x 64
conv4 = Convolution(nf * 8)(x)
conv4 = BatchNorm()(conv4)
x = LeakyReLU(0.2)(conv4)
# nf*8 x 32 x 32
conv5 = Convolution(nf * 8)(x)
conv5 = BatchNorm()(conv5)
x = LeakyReLU(0.2)(conv5)
# nf*8 x 16 x 16
conv6 = Convolution(nf * 8)(x)
conv6 = BatchNorm()(conv6)
x = LeakyReLU(0.2)(conv6)
# nf*8 x 8 x 8
conv7 = Convolution(nf * 8)(x)
conv7 = BatchNorm()(conv7)
x = LeakyReLU(0.2)(conv7)
# nf*8 x 4 x 4
conv8 = Convolution(nf * 8)(x)
conv8 = BatchNorm()(conv8)
x = LeakyReLU(0.2)(conv8)
# nf*8 x 2 x 2
conv9 = Convolution(nf * 8, k=2, s=1, border_mode='valid')(x)
conv9 = BatchNorm()(conv9)
x = LeakyReLU(0.2)(conv9)
# nf*8 x 1 x 1
dconv1 = Deconvolution(nf * 8,
get_deconv_shape(batch_size, nf * 8, 2, 2),
k=2, s=1)(x)
dconv1 = BatchNorm()(dconv1)
dconv1 = Dropout(0.5)(dconv1)
x = concatenate_layers([dconv1, conv8], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(8 + 8) x 2 x 2
dconv2 = Deconvolution(nf * 8,
get_deconv_shape(batch_size, nf * 8, 4, 4))(x)
dconv2 = BatchNorm()(dconv2)
dconv2 = Dropout(0.5)(dconv2)
x = concatenate_layers([dconv2, conv7], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(8 + 8) x 4 x 4
dconv3 = Deconvolution(nf * 8,
get_deconv_shape(batch_size, nf * 8, 8, 8))(x)
dconv3 = BatchNorm()(dconv3)
dconv3 = Dropout(0.5)(dconv3)
x = concatenate_layers([dconv3, conv6], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(8 + 8) x 8 x 8
dconv4 = Deconvolution(nf * 8,
get_deconv_shape(batch_size, nf * 8, 16, 16))(x)
dconv4 = BatchNorm()(dconv4)
x = concatenate_layers([dconv4, conv5], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(8 + 8) x 16 x 16
dconv5 = Deconvolution(nf * 8,
get_deconv_shape(batch_size, nf * 8, 32, 32))(x)
dconv5 = BatchNorm()(dconv5)
x = concatenate_layers([dconv5, conv4], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(8 + 8) x 32 x 32
dconv6 = Deconvolution(nf * 4,
get_deconv_shape(batch_size, nf * 4, 64, 64))(x)
dconv6 = BatchNorm()(dconv6)
x = concatenate_layers([dconv6, conv3], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(4 + 4) x 64 x 64
dconv7 = Deconvolution(nf * 2,
get_deconv_shape(batch_size, nf * 2, 128, 128))(x)
dconv7 = BatchNorm()(dconv7)
x = concatenate_layers([dconv7, conv2], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(2 + 2) x 128 x 128
dconv8 = Deconvolution(nf,
get_deconv_shape(batch_size, nf, 256, 256))(x)
dconv8 = BatchNorm()(dconv8)
x = concatenate_layers([dconv8, conv1], **merge_params)
x = LeakyReLU(0.2)(x)
# nf*(1 + 1) x 256 x 256
dconv9 = Deconvolution(out_ch,
get_deconv_shape(batch_size, out_ch, 512, 512))(x)
# out_ch x 512 x 512
act = 'sigmoid' if is_binary else 'tanh'
out = Activation(act)(dconv9)
unet = Model(i, out, name=name)
return unet
def discriminator(a_ch, b_ch, nf, opt=Adam(lr=2e-4, beta_1=0.5), name='d'):
"""Define the discriminator network.
Parameters:
- a_ch: the number of channels of the first image;
- b_ch: the number of channels of the second image;
- nf: the number of filters of the first layer.
>>> K.set_image_dim_ordering('th')
>>> disc=discriminator(3,4,2)
>>> for ilay in disc.layers: ilay.name='_'.join(ilay.name.split('_')[:-1]) # remove layer id
>>> disc.summary() #doctest: +NORMALIZE_WHITESPACE
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 7, 512, 512) 0
_________________________________________________________________
conv2d (Conv2D) (None, 2, 256, 256) 128
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 2, 256, 256) 0
_________________________________________________________________
conv2d (Conv2D) (None, 4, 128, 128) 76
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 4, 128, 128) 0
_________________________________________________________________
conv2d (Conv2D) (None, 8, 64, 64) 296
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 8, 64, 64) 0
_________________________________________________________________
conv2d (Conv2D) (None, 16, 32, 32) 1168
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 16, 32, 32) 0
_________________________________________________________________
conv2d (Conv2D) (None, 1, 16, 16) 145
_________________________________________________________________
activation (Activation) (None, 1, 16, 16) 0
=================================================================
Total params: 1,813.0
Trainable params: 1,813.0
Non-trainable params: 0.0
_________________________________________________________________
"""
i = Input(shape=(a_ch + b_ch, 512, 512))
# (a_ch + b_ch) x 512 x 512
conv1 = Convolution(nf)(i)
x = LeakyReLU(0.2)(conv1)
# nf x 256 x 256
conv2 = Convolution(nf * 2)(x)
x = LeakyReLU(0.2)(conv2)
# nf*2 x 128 x 128
conv3 = Convolution(nf * 4)(x)
x = LeakyReLU(0.2)(conv3)
# nf*4 x 64 x 64
conv4 = Convolution(nf * 8)(x)
x = LeakyReLU(0.2)(conv4)
# nf*8 x 32 x 32
conv5 = Convolution(1)(x)
out = Activation('sigmoid')(conv5)
# 1 x 16 x 16
d = Model(i, out, name=name)
def d_loss(y_true, y_pred):
L = objectives.binary_crossentropy(K.batch_flatten(y_true),
K.batch_flatten(y_pred))
return L
d.compile(optimizer=opt, loss=d_loss)
return d
def pix2pix(atob, d, a_ch, b_ch, alpha=100, is_a_binary=False,
is_b_binary=False, opt=Adam(lr=2e-4, beta_1=0.5), name='pix2pix'):
# type: (...) -> keras.models.Model
"""
Define the pix2pix network.
:param atob:
:param d:
:param a_ch:
:param b_ch:
:param alpha:
:param is_a_binary:
:param is_b_binary:
:param opt:
:param name:
:return:
>>> K.set_image_dim_ordering('th')
>>> unet = g_unet(3, 4, 2, batch_size=8, is_binary=False)
TheanoShapedU-NET
>>> disc=discriminator(3,4,2)
>>> pp_net=pix2pix(unet, disc, 3, 4)
>>> for ilay in pp_net.layers: ilay.name='_'.join(ilay.name.split('_')[:-1]) # remove layer id
>>> pp_net.summary() #doctest: +NORMALIZE_WHITESPACE
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 3, 512, 512) 0
_________________________________________________________________
(Model) (None, 4, 512, 512) 23454
_________________________________________________________________
concatenate (Concatenate) (None, 7, 512, 512) 0
_________________________________________________________________
(Model) (None, 1, 16, 16) 1813
=================================================================
Total params: 25,267.0
Trainable params: 24,859.0
Non-trainable params: 408.0
_________________________________________________________________
"""
a = Input(shape=(a_ch, 512, 512))
b = Input(shape=(b_ch, 512, 512))
# A -> B'
bp = atob(a)
# Discriminator receives the pair of images
d_in = concatenate_layers([a, bp], mode='concat', concat_axis=1)
pix2pix = Model([a, b], d(d_in), name=name)
def pix2pix_loss(y_true, y_pred):
y_true_flat = K.batch_flatten(y_true)
y_pred_flat = K.batch_flatten(y_pred)
# Adversarial Loss
L_adv = objectives.binary_crossentropy(y_true_flat, y_pred_flat)
# A to B loss
b_flat = K.batch_flatten(b)
bp_flat = K.batch_flatten(bp)
if is_b_binary:
L_atob = objectives.binary_crossentropy(b_flat, bp_flat)
else:
L_atob = K.mean(K.abs(b_flat - bp_flat))
return L_adv + alpha * L_atob
# This network is used to train the generator. Freeze the discriminator part.
pix2pix.get_layer('d').trainable = False
pix2pix.compile(optimizer=opt, loss=pix2pix_loss)
return pix2pix
if __name__ == '__main__':
import doctest
TEST_TF = True
if TEST_TF:
os.environ['KERAS_BACKEND'] = 'tensorflow'
else:
os.environ['KERAS_BACKEND'] = 'theano'
doctest.testsource('models.py', verbose=True, optionflags=doctest.ELLIPSIS)