forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordsim.py
93 lines (70 loc) · 2.37 KB
/
wordsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
#
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Computes Spearman's rho with respect to human judgements.
Given a set of row (and potentially column) embeddings, this computes Spearman's
rho between the rank ordering of predicted word similarity and human judgements.
Usage:
wordim.py --embeddings=<binvecs> --vocab=<vocab> eval1.tab eval2.tab ...
Options:
--embeddings=<filename>: the vectors to test
--vocab=<filename>: the vocabulary file
Evaluation files are assumed to be tab-separated files with exactly three
columns. The first two columns contain the words, and the third column contains
the scored human judgement.
"""
from __future__ import print_function
import scipy.stats
import sys
from getopt import GetoptError, getopt
from vecs import Vecs
try:
opts, args = getopt(sys.argv[1:], '', ['embeddings=', 'vocab='])
except GetoptError as e:
print(e, file=sys.stderr)
sys.exit(2)
opt_embeddings = None
opt_vocab = None
for o, a in opts:
if o == '--embeddings':
opt_embeddings = a
if o == '--vocab':
opt_vocab = a
if not opt_vocab:
print('please specify a vocabulary file with "--vocab"', file=sys.stderr)
sys.exit(2)
if not opt_embeddings:
print('please specify the embeddings with "--embeddings"', file=sys.stderr)
sys.exit(2)
try:
vecs = Vecs(opt_vocab, opt_embeddings)
except IOError as e:
print(e, file=sys.stderr)
sys.exit(1)
def evaluate(lines):
acts, preds = [], []
with open(filename, 'r') as lines:
for line in lines:
w1, w2, act = line.strip().split('\t')
pred = vecs.similarity(w1, w2)
if pred is None:
continue
acts.append(float(act))
preds.append(pred)
rho, _ = scipy.stats.spearmanr(acts, preds)
return rho
for filename in args:
with open(filename, 'r') as lines:
print('%0.3f %s' % (evaluate(lines), filename))