forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizers.py
executable file
·196 lines (145 loc) · 6.17 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Optimizers mostly for value estimate.
Gradient Descent optimizer
LBFGS optimizer
Best Fit optimizer
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import scipy.optimize
def var_size(v):
return int(np.prod([int(d) for d in v.shape]))
def gradients(loss, var_list):
grads = tf.gradients(loss, var_list)
return [g if g is not None else tf.zeros(v.shape)
for g, v in zip(grads, var_list)]
def flatgrad(loss, var_list):
grads = gradients(loss, var_list)
return tf.concat([tf.reshape(grad, [-1])
for (v, grad) in zip(var_list, grads)
if grad is not None], 0)
def get_flat(var_list):
return tf.concat([tf.reshape(v, [-1]) for v in var_list], 0)
def set_from_flat(var_list, flat_theta):
assigns = []
shapes = [v.shape for v in var_list]
sizes = [var_size(v) for v in var_list]
start = 0
assigns = []
for (shape, size, v) in zip(shapes, sizes, var_list):
assigns.append(v.assign(
tf.reshape(flat_theta[start:start + size], shape)))
start += size
assert start == sum(sizes)
return tf.group(*assigns)
class LbfgsOptimization(object):
def __init__(self, max_iter=25, mix_frac=1.0):
self.max_iter = max_iter
self.mix_frac = mix_frac
def setup_placeholders(self):
self.flat_theta = tf.placeholder(tf.float32, [None], 'flat_theta')
self.intended_values = tf.placeholder(tf.float32, [None], 'intended_values')
def setup(self, var_list, values, targets, pads,
inputs, regression_weight):
self.setup_placeholders()
self.values = values
self.targets = targets
self.raw_loss = (tf.reduce_sum((1 - pads) * tf.square(values - self.intended_values))
/ tf.reduce_sum(1 - pads))
self.loss_flat_gradient = flatgrad(self.raw_loss, var_list)
self.flat_vars = get_flat(var_list)
self.set_vars = set_from_flat(var_list, self.flat_theta)
def optimize(self, sess, feed_dict):
old_theta = sess.run(self.flat_vars)
old_values, targets = sess.run([self.values, self.targets], feed_dict=feed_dict)
intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac)
feed_dict = dict(feed_dict)
feed_dict[self.intended_values] = intended_values
def calc_loss_and_grad(theta):
sess.run(self.set_vars, feed_dict={self.flat_theta: theta})
loss, grad = sess.run([self.raw_loss, self.loss_flat_gradient],
feed_dict=feed_dict)
grad = grad.astype('float64')
return loss, grad
theta, _, _ = scipy.optimize.fmin_l_bfgs_b(
calc_loss_and_grad, old_theta, maxiter=self.max_iter)
sess.run(self.set_vars, feed_dict={self.flat_theta: theta})
class GradOptimization(object):
def __init__(self, learning_rate=0.001, max_iter=25, mix_frac=1.0):
self.learning_rate = learning_rate
self.max_iter = max_iter
self.mix_frac = mix_frac
def get_optimizer(self):
return tf.train.AdamOptimizer(learning_rate=self.learning_rate,
epsilon=2e-4)
def setup_placeholders(self):
self.flat_theta = tf.placeholder(tf.float32, [None], 'flat_theta')
self.intended_values = tf.placeholder(tf.float32, [None], 'intended_values')
def setup(self, var_list, values, targets, pads,
inputs, regression_weight):
self.setup_placeholders()
self.values = values
self.targets = targets
self.raw_loss = (tf.reduce_sum((1 - pads) * tf.square(values - self.intended_values))
/ tf.reduce_sum(1 - pads))
opt = self.get_optimizer()
params = var_list
grads = tf.gradients(self.raw_loss, params)
self.gradient_ops = opt.apply_gradients(zip(grads, params))
def optimize(self, sess, feed_dict):
old_values, targets = sess.run([self.values, self.targets], feed_dict=feed_dict)
intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac)
feed_dict = dict(feed_dict)
feed_dict[self.intended_values] = intended_values
for _ in xrange(self.max_iter):
sess.run(self.gradient_ops, feed_dict=feed_dict)
class BestFitOptimization(object):
def __init__(self, mix_frac=1.0):
self.mix_frac = mix_frac
def setup_placeholders(self):
self.new_regression_weight = tf.placeholder(
tf.float32, self.regression_weight.shape)
def setup(self, var_list, values, targets, pads,
inputs, regression_weight):
self.values = values
self.targets = targets
self.inputs = inputs
self.regression_weight = regression_weight
self.setup_placeholders()
self.update_regression_weight = tf.assign(
self.regression_weight, self.new_regression_weight)
def optimize(self, sess, feed_dict):
reg_input, reg_weight, old_values, targets = sess.run(
[self.inputs, self.regression_weight, self.values, self.targets],
feed_dict=feed_dict)
intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac)
# taken from rllab
reg_coeff = 1e-5
for _ in range(5):
best_fit_weight = np.linalg.lstsq(
reg_input.T.dot(reg_input) +
reg_coeff * np.identity(reg_input.shape[1]),
reg_input.T.dot(intended_values))[0]
if not np.any(np.isnan(best_fit_weight)):
break
reg_coeff *= 10
if len(best_fit_weight.shape) == 1:
best_fit_weight = np.expand_dims(best_fit_weight, -1)
sess.run(self.update_regression_weight,
feed_dict={self.new_regression_weight: best_fit_weight})