-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMicSpotformer.m
485 lines (413 loc) · 25.8 KB
/
MicSpotformer.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
%Author: Dimme de Groot
%Date: Sept. 2024
%Descr: This object implements the microphone spotformer
%
%Methods:
% Create the spotformer object:
% MicSpot = MicSpotformer(c, fs, window_length, pad_length, N_int, IntWinRad, TarWinRad, nSigma2, numSigma2, rebRatio, flag_full_axis, analysis_window, synthesis_window;
% with: c speed of sound [m/s],
% fs sampling frequency [Hz]
% window_length the length of the input frame in [s],
% pad_length the length of the padding in [s],
% N_int the number of points per integral (triple integral: N_int^3 points in total)
% IntWinRad the 3 sigma radius of the interfer window
% TarWinRad the 3 sigma radius of the target window
% nSigma2 a regularisation term which can be used in case of micropone self noise
% numSigma2 a regularisation term which is used to ensure the matrices are positive definite in the presence of numerical inaccuracies
% rebRatio a term specifying the direct to reverberant sound ratio
% flag_full_axis specifies whether or not to use the full frequency axis or only half (true/false)
% analysis_window a string specifying the analysis window (currently only: "sqrthann")
% synthesis_window a string specifying the synthesis window (currently only: "sqrthann")
% Unless otherwise mentioned, all inputs are scalars!!!
%
% See example files for the other methods
%
%Dependencies: The function "clenquad" is needed. This function computes the quadrature weights. I used (a renamed version of) the following function:
% https://www.mathworks.com/matlabcentral/fileexchange/6911-fast-clenshaw-curtis-quadrature
% It has a permissive license and is provided on the github
%
% Note that the RIR-generator by E. Habets is provided on the github as well. This is not a dependency for the spotformer object itself, but is needed to run the examples.
classdef MicSpotformer < handle
properties
c %[m/s], speed of sound
fs %[Hz], sampling frequency
window_length_act %[s], actual window length
N_t %[-], window length in samples
pad_length_act %[s], actual padding length
N_pad %[-], padding length in samples
N_hop %[-], hop length in samples
w_analysis %[-], analysis window
w_synthesis %[-], synthesis window
N_int;
numSigma2 %[], regularisation term for numerical inaccuracy. In my experience, this can be zero. But very small will enforce positive definiteness in the presence of numerical inaccuracies
nSigma2 %[], term for microphone self-noise
rebRatio %[-], Parameter of regularisation applied to estimated covariance matrics
Riso %[], the covariance matrix corresponding to the late reverberation
Rnum %[], a regularisation term for mnumerical inaccuracies
Rn %[], a regularisation term for self-noise
R_Int %[], the covariance matrix for the interferers
R_Tar %[], the covariance matrix for the target location
flag_full_axis %[-], True for full frequency axis [-Fs/2, Fs/2). False for [0, Fs/2]
k_ax %[rad/m], wavenumber axis
N_k %[-], length of k_axis
IntWinSigma2 %[m2], sigma^2, interferer region
TarWinSigma2 %[m2], sigma^2, target region
weights_mic %[-], the weights of the microphone spotformer
end
methods
function obj = MicSpotformer(c, fs, window_length, pad_length, N_int, IntWinRad, TarWinRad, nSigma2, numSigma2, rebRatio, flag_full_axis, analysis_window, synthesis_window)
if nargin == 0
c = 342;
fs = 16000;
window_length = 0.016;
pad_length = 0.016;
IntWinRad = 0.5;
TarWinRad = 0.5;
numSigma2 = 1e-10;
nSigma2 = 0;
rebRatio = 0;
flag_full_axis = false;
analysis_window = "sqrthann";
synthesis_window = "sqrthann";
end
obj.c = c;
obj.fs = fs;
obj.N_int = N_int;
obj.N_t = 2^nextpow2(floor(fs.*window_length));
if pad_length ~= 0
obj.N_pad = 2^nextpow2(floor(fs.*pad_length));
else
obj.N_pad = 0;
end
obj.window_length_act = obj.N_t/fs;
obj.pad_length_act = obj.N_pad/fs;
obj.IntWinSigma2 = (IntWinRad/3)^2;
obj.TarWinSigma2 = (TarWinRad/3)^2;
obj.rebRatio = rebRatio;
obj.nSigma2 = nSigma2;
obj.numSigma2 = numSigma2;
obj.flag_full_axis = flag_full_axis;
if analysis_window == "sqrthann"
obj.N_hop = obj.N_t/2;
obj.w_analysis = methodSqrthann(obj);
else
disp("currently only sqrthann is supported as window :S")
end
if synthesis_window == "sqrthann"
obj.w_synthesis = methodSqrthann(obj);
else
disp("currently only sqrthann is supported as window :S")
end
methodK_ax(obj);
obj.N_k = length(obj.k_ax);
end
%Some methods used internally
function window = methodSqrthann(obj)
% This function computes thes sqaure root hanning window
% See, i.e., Smith, J.O. Spectral Audio Signal Processing, http://ccrma.stanford.edu/~jos/sasp/, online book, 2011 edition.
n = (0:1:obj.N_t-1).'; %note: obj.N_t is the length of the window
m = n-obj.N_t/2;
window = sqrt(ones(obj.N_t, 1).*(0.5+0.5*cos(2*pi/obj.N_t * m)));
end
function methodK_ax(obj)
% this function computes the wavenumber axis
obj.N_k = obj.N_t + obj.N_pad; %[-], total number of frequency bins (even)
if obj.flag_full_axis
k_ax = (-obj.N_k/2:1:obj.N_k/2-1)/obj.N_k*2*pi*obj.fs/obj.c;
k_ax = fftshift(k_ax);
else
k_ax = (0:1:obj.N_k/2)/obj.N_k*2*pi*obj.fs/obj.c; %[rad/m], wave number -> only half of the axis [0, Fs/2] is relevant
end
obj.k_ax = k_ax;
end
function fnc_comp_Rn(obj, dim)
% This function computes Rnum and Rn
obj.Rnum = eye(dim)*obj.numSigma2;
obj.Rn = eye(dim)*obj.nSigma2;
end
function fnc_comp_Risotropic(obj, x)
% This function computes Riso, excluding(!) the rebratio term.
N = size(x,1); %number of positions considered
R_iso = zeros(N, N, length(obj.k_ax));
dist = distcalc(x,x); %norm(x1-x2), norm(x1-x2), etc.
for i = 1:length(obj.k_ax)
R_iso(:,:,i) = sinc(obj.k_ax(i)*dist);
end
obj.Riso = R_iso;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These are methods relating to the spatial integration %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function D=distcalc(X1,X2)
%Descr: D = distcalc(X1, X2) computes the distances between X1 and X2 for each item in the list
% X1 is an M1 x dim matrix with entries (x,y,z) or similar (dim=3 for {x,y,z}, dim=2 for {x,y}, etc.)
% X2 is an M2 x dim " "
% D is an M1 x M2 matrix with the distances between the locations in X1 and X2. The i'th row of the j'th columnt corresponds to L2-norm( {X1}_i - {X2}_j )
M1 = size(X1,1);
M2 = size(X2,1);
D = zeros(M1,M2);
for i=1:M1
D(i,:) = vecnorm(X1(i,:) - X2,2,2);
end
end
function out = fnc_green_wavefunction(x_s, x_r, k)
%Descr: This function evaluates the greens function solution to the (acoustic) wave equation in the frequency domain.
% g(x_s, x_r, k) = exp(-1j * k * norm(x_s-x_r)) / (4*pi*norm(x_s-x_r)), with k = f/c the wavenumber, f the frequency in hertz, c the wave velocity
% Inputs:
% x_s a 3x1 real vector giving the source location
% x_r a 3xN real vector giving the receiver location
% k a real scalar giving the wavenumber
% Outputs:
% out a 1 x N complex vector. The i'th element contains the greens function evaluated for the i'th coordiante of x_r (i.e. x_r(:,i));
%
% Note: the greens function for the wave equation (actually: helmholtz equation) is symmetric in the coordinate argument.
% I.e. g(x_s, x_r, k) = g(x_r, x_s, k)
dist = vecnorm(x_s-x_r);
out = 1./(4*pi*dist).*exp(-1j*k*dist);
end
function out = fnc_integrand_Gaussian(x_s1, x_s2, x_r, k, mu_r, sigma_x, sigma_y, sigma_z, flag_spatial_weight)
%Descr: This function is used for computing the spatial covariance matrices.
% out = fnc_integrand_Gaussian(x_s1, x_s2, x_r, k, mu_r, sigma_x, sigma_y, sigma_z, flag_spatial_weight)
% If flag_spatial_weight==false
% out = 1/(sqrt{(2*pi)^3}*sigma_x*sigma_y*sigma_z) * g(x_s1, x_r, k)*conj(g(x_s2, x_r, k))
% If flag_spatial_weight==true, a Gaussian is added:
% out = 1/(sqrt{(2*pi)^3}*sigma_x*sigma_y*sigma_z) * g(x_s1, x_r, k)*conj(g(x_s2, x_r, k))*exp(-0.5 {[(x_r(1)-mu(1))/sigma_x]^2+[(x_r(2)-mu(2))/sigma_y]^2+[(x_r(3)-mu(3))/sigma_z]^2})
%
% Here, g is the greens function solution to the wave equation
%
% Inputs:
% - x_s1, x_s2 the source locations. 3x1 real vectors
% - x_r the receiver location. (integration variable) 3xN real vector --> the output is computed for each N
% - mu_r the mean of the Guassian. 3x1 real vector
% - sigma_x, sigma_y, sigma_z the standard deviations. Real scalar
% - k the wave number. Real scalar
% - flag_spatial_weight selects if the Gaussian weighting should be added.
% Output:
% - Out: 1xN complex vector. Each element out(1,i) is the result evaluated for receiver location x_r(:,i);
%The inner term of the integrand
out = fnc_green_wavefunction(x_s1, x_r, k).*conj(fnc_green_wavefunction(x_s2, x_r, k));
%Normalisation term of (Gaussian) weighting
normConst = sqrt((2*pi)^3)*sigma_x*sigma_y*sigma_z;
%Gaussian (spatial) weighting
%Note: if a Gauss-hermite quadrature is used, this is not needed (it is implicit in the weights). For Clenshaw-Curtis it is not included in the weights.
if flag_spatial_weight
diff = x_r - mu_r;
out = out.*exp(-0.5*( (diff(1,:)/sigma_x).^2 + (diff(2,:)/sigma_y).^2 + (diff(3,:)/sigma_z).^2 ));
end
%Output should be normalised by normalisation term
out = out/normConst;
end
function R_region = fnc_comp_Rregion(obj, x, x_bar, sigma2)
%Descr: Computes the covariance matrices over the regions. (Excluding the isotropic and numerical covariance matrices)
%
%Inputs: - N: [1 x 1] or [3 x 1] or [1 x 3] the number of points per dimension in the numerical integration. Can easily be changed to make number of points dimension depedent
% - k_ax: [Nk x 1], the frequency axis in radians per second
% - x: [Nr x 3], the locations for which the correlations are computed.
% - x_bar: [1 x 3], the mean location around which we integrate (i.e. the integration variable, but we set the variable part in this function)
% - sigma_2: [1 x 1] or [3 x 1] or [1 x 3], the standard deviation of the sphere we integrate. Can easily be changed to a vevctor for each dimension.
%Output: - R_region: [Nr x Nr x Nk], the computed covariance matrix per frequency bin.
%
%Dependencies: clenquad.m: a matlab function for computing the clenshaw-curtis quadrature weights.
% Assign the number of integration points and standard deviations for the microphone spotformer
N = obj.N_int;
if isscalar(N)
Nx = N; Ny = N; Nz = N;
else
Nx = N(1); Ny = N(2); Nz = N(3);
end
% Assign the standard deviations per argument
sigma = sqrt(sigma2);
if isscalar(sigma)
sigma_x = sigma; sigma_y = sigma; sigma_z = sigma;
end
Nr = size(x,1); %The number of microphones
Nk = length(obj.k_ax); %The number of frequency bins
% Compute quadrature points: integrate from the mean location to +- 3 standard deviations
[x_quad, w_x] = clenquad(Nx, -3*sigma_x+x_bar(1), 3*sigma_x+x_bar(1));
[y_quad, w_y] = clenquad(Ny, -3*sigma_y+x_bar(2), 3*sigma_y+x_bar(2));
[z_quad, w_z] = clenquad(Nz, -3*sigma_z+x_bar(3), 3*sigma_z+x_bar(3));
[weight_list, coor_list] = weightlist(w_x, x_quad, w_y, y_quad, w_z, z_quad);
% Lots of for loops! x-y-z dimension + frequency bins
% Note: R(i,j,k) = conj(R(j,i,k)): this allows for speed up!
R_region = zeros(Nr, Nr, Nk);
for i=1:Nr
for j=1:Nr
for k=1:Nk
kk = obj.k_ax(k); %Get frequency in rad/s
out = fnc_integrand_Gaussian(x(i,:)', x(j,:)', coor_list, kk, x_bar', sigma_x, sigma_y, sigma_z, true);
R_region(i,j,k) = sum(weight_list.*out);
end
end
end
end
function [weight_list, coor_list] = weightlist(w_x, coor_x, w_y, coor_y, w_z, coor_z)
% Function to gert all coordinates and the corresponding weights needed for the numerical integration
% Inputs: - w_{x,y,z}: weightvectors of length N_{x,y,z}. Orientation does not matter
% - coor_{x,y,z}: the corresponding coordinates of length N_{x,y,z}. Orientation does not matter
% Outputs: - weight_list: a list of weights of size [1, N_x*N_y*N_z]
% - coor_list: coor_list is a list of coordinates of size [3, N_x*N_y*N_z]
% Note: a numerically more robust implementation would probably first do the inner sum, than weigh it with the weights of the middle sum, etc.
% our implementation instead pulls the weights together at once.
%Define lengths and placeholds
Nx = length(w_x);
Ny = length(w_y);
Nz = length(w_z);
coor_list = zeros(3,Nx*Ny*Nz);
weight_list = zeros(1,Nx*Ny*Nz);
%Loop through coordinates
count = 1;
for i=1:Nx
for j=1:Ny
for k=1:Nz
coor_list(:,count) = [coor_x(i); coor_y(j); coor_z(k)];
weight_list(1,count) = w_x(i)*w_y(j)*w_z(k);
count = count+1;
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Perform the spatial integration and compute the covariance matrices %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function fnc_comp_covariance(obj, interferer_location, target_location, receiver_location)
% This function computes the spatial interference and target covariance matrix
% The correlations between the receiver locations are computed and stored in two covariance matrices (see outputs)
% Input: interferer location (N_interferer x 3), target location (N_target x 3), receiver_location (N_receiver x 3)
% Output: obj.R_Int, obj.R_tar. Both are N_receiver x N_receiver x N_freq_bins
%We compute the covariance between each combination of microphones. x represents these microphone locations []
x = receiver_location;
%%%%%%%%%%%%%%%%%%%%%%%
% Compute covariances %
%%%%%%%%%%%%%%%%%%%%%%%
% (1) Interferer
R_L_INT = 0;
for i=1:size(interferer_location,1) % Each loudspeaker is an interferer
mu = interferer_location(i,:); % For integration: set mean to loudspeaker location
R_h = obj.fnc_comp_Rregion(x, mu, obj.IntWinSigma2); % compute the covariance over the regions using clenshaw curtis quadrature
R_L_INT = R_L_INT + R_h; % We sum the contribution of each region to get the total region
end
obj.R_Int = R_L_INT;
% (2) Target
R_L_TAR = 0;
for i=1:size(target_location,1)
mu = target_location(i,:); % Each person is a target; So far I only used one person so it might not work with more than one.
R_h = obj.fnc_comp_Rregion(x, mu, obj.TarWinSigma2); % Compute the covariance over the regions.
R_L_TAR = R_L_TAR+R_h; % We sum the contribution of each region to get the total region
end
obj.R_Tar = R_L_TAR;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These are functions which relate to the microphone weights %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function fnc_comp_weights(obj, interferer_location, target_location, receiver_location, nyquist_flag)
%Descr: This function computes the weights of the microphone spotformer.
%
%Inputs: R_TAR in Nr x Nr x Nk: the covariance matrix of the target locations
% R_INT in Nr x Nr x Nk: the covariance matrix of the interferer locations
% settings the setting object; we use settings.flag_full_axis and settings.nyquist
%Outputs: w in Nr x Nk: the beamforming weights.
if nargin == 4
nyquist_flag = false;
end
% Get the matrices Rn, Rnum, Riso, R_Int and R_Tar
Nr = size(receiver_location, 1); %number of receivers
fnc_comp_Rn(obj, Nr)
fnc_comp_Risotropic(obj, receiver_location)
fnc_comp_covariance(obj, interferer_location, target_location, receiver_location)
% Get the matrices R_INT = R_Int + R_n + R_num + R_iso; and R_TAR = R_Tar + R_num (numerical inaccuracy is present for both)
R_INT = obj.R_Int + obj.Rnum + obj.Rn + obj.rebRatio*pagenorm(obj.R_Int).*obj.Riso;
R_TAR = obj.R_Tar + obj.Rnum;
disp("Spatially integrating over the regions. This might take a while...")
for k=1:obj.N_k
R_INTk = R_INT(:,:,k); %compute total interferer covariance by summing over the individual ones
R_TARk = R_TAR(:,:,k); %idem
[V,D] = eig(R_INTk, R_TARk); %perform generalised eigenvalue decomposition.
d = diag(D);
[min_d,i] = min(d);
%We expect that the imaginary part of d is virtually zero. Similarly, its eigenvalue should be larger than 0 (postive definite)
if(sum(abs(imag(d)))~=0)
disp("Eigenvalues of the " + num2str(k) + "th bin are partially imaginary." ...
+ "Value (sum of absolute imagninary parts)=" + num2str(sum(abs(imag(d)))))
end
if min_d < 0
disp("Numerical inaccuracy (I think): the smallest eigenvalue of bin "...
+ num2str(k) + " is below zero. Value: " +num2str(min_d) );
end
%Take eigenvector of length 1 corresponding to smallest eigenvalue.
v = V(:,i);
w(:,k) = v/norm(v);
lambda(k) = min_d;
end
%Artifically set Nyquist bin to zero in case nyquist_flag = true
if nyquist_flag
if obj.flag_full_axis
w(:,obj.N_k/2+1) = 0;
else
w(:,end) = 0;
end
end
% Assign weights to object
obj.weights_mic = w;
end
function outputFrame = fnc_comp_output_frame(obj, inputFrame)
Nr = size(obj.R_Int,1);
if size(inputFrame) ~= [obj.N_t, Nr]
disp("inputFrame has incorrect size")
end
% FFT of single frame; windowed and zeropadded
inputFrameHat = fft(obj.w_analysis.*inputFrame, obj.N_t + obj.N_pad);
% Multiply with spotformerweights and take ifft
if obj.flag_full_axis
outputFrameHat = obj.weights_mic'.*inputFrameHat;
outputFrame = ifft(outputFrameHat);
else
outputFrameHat = obj.weights_mic'.*inputFrameHat(1:obj.N_t + 1,:);
outputFrame = ifft([outputFrameHat; zeros(obj.N_pad - 1, Nr)], 'symmetric');
end
% Sum over the microphones
outputFrame = obj.w_synthesis.*sum(outputFrame(1:obj.N_t,:),2);
end
function audioOut = comp_output(obj, audioMixture)
% This function takes as input the audio mixture and outputs the audio as obtained through the microphone spotformer
% The advantage of this function over comp_output_headless is that there is no need to recompute the weights for a different audio_input.
% However, headless mode does not require first calling the fnc_comp_weights method.
%
% Input: audioMixture - the LENGTH x Number Recievers audio as obtained by the microphones
% Outputs: audioOut - the LENGTH x 1 audio signal as obtained through the microphone spotformer.
l = 0; % Frame counter
stop_flag = 0; % Flag indicating when we are done
audioOut = zeros(size(audioMixture,1)+obj.N_pad, 1); % Set variable containing the output audio
while stop_flag == 0
try %When we are out of frames, an error will be thrown and the stop_flag will be set to 1.
inputFrame = audioMixture(l*obj.N_hop+1:l*obj.N_hop+obj.N_t,:);
outputFrame = obj.fnc_comp_output_frame(inputFrame);
audioOut(l*obj.N_hop+1:l*obj.N_hop+obj.N_t,:) = audioOut(l*obj.N_hop+1:l*obj.N_hop+obj.N_t,:) + outputFrame;
catch ME
if strncmp("Index", ME.message, 5)
disp("Crashed at frame " + num2str(l) + " v.d. approx " + num2str(floor(size(audioMixture,1)/obj.N_hop - 1)))
stop_flag = 1;
else
rethrow(ME)
end
end
l = l+1;
end
end
function audioOut = comp_output_headless(obj, audioMixture, interferer_location, target_location, receiver_location, nyquist_flag)
% This function takes as input the audio mixture and outputs the audio as obtained through the microphone spotformer
% The advantage of this function over comp_output is that you dont need to think about precomputing the weighrs.
% The disadvantage is that, if you use the spotformer multiple times in succesion, it is more effecient to compute the weights only once
%
% Input: audioMixture - the LENGTH x Number Recievers audio as obtained by the microphones
% interferer_location - [m], (N_interferer x 3), the location of the interferer sound signal
% target location - [m], (N_target x 3), the location of the target sound signal
% receiver_location - [m], (N_receiver x 3), the location of the receivers (microphones)
% Outputs: audioOut - the LENGTH x 1 audio signal as obtained through the microphone spotformer.
if nargin == 5
nyquist_flag = false;
end
obj.fnc_comp_weights(interferer_location, target_location, receiver_location, nyquist_flag)
audioOut = obj.comp_output(audioMixture);
end
end
end