-
Notifications
You must be signed in to change notification settings - Fork 31
/
example_import.py
44 lines (33 loc) Β· 1.99 KB
/
example_import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
from gtfspy import import_gtfs
from gtfspy import gtfs
from gtfspy import osm_transfers
def load_or_import_example_gtfs(verbose=False):
imported_database_path = "test_db_kuopio.sqlite"
if not os.path.exists(imported_database_path): # reimport only if the imported database does not already exist
print("Importing gtfs zip file")
import_gtfs.import_gtfs(["data/gtfs_kuopio_finland.zip"], # input: list of GTFS zip files (or directories)
imported_database_path, # output: where to create the new sqlite3 database
print_progress=verbose, # whether to print progress when importing data
location_name="Kuopio")
# Not this is an optional step, which is not necessary for many things.
print("Computing walking paths using OSM")
G = gtfs.GTFS(imported_database_path)
G.meta['download_date'] = "2017-03-15"
osm_path = "data/kuopio_extract_mapzen_2017_03_15.osm.pbf"
# when using with the Kuopio test data set,
# this should raise a warning due to no nearby OSM nodes for one of the stops.
osm_transfers.add_walk_distances_to_db_python(imported_database_path, osm_path)
print("Note: for large cities we have also a faster option for computing footpaths that uses Java.)")
dir_path = os.path.dirname(os.path.realpath(__file__))
java_path = os.path.join(dir_path, "../java_routing/")
print("Please see the contents of " + java_path + " for more details.")
# Now you can access the imported database using a GTFS-object as an interface:
G = gtfs.GTFS(imported_database_path)
if verbose:
print("Location name:" + G.get_location_name()) # should print Kuopio
print("Time span of the data in unixtime: " + str(G.get_approximate_schedule_time_span_in_ut()))
# prints the time span in unix time
return G
if __name__ == "__main__":
load_or_import_example_gtfs(verbose=True)