-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathutils.py
253 lines (224 loc) · 10.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import json, re
import torch
import tokenizer
import cleaner
import zipfile
import glob, os, shutil
from model import init_model
from beam_decoder import beam_search
import torch.nn.utils.rnn as rnn_utils
import requests
def translate_txt(file, output, max_len, batch_size, translate_batch, is_terminated):
def translate_and_write(text):
results = translate_batch(text)
if results is not None:
with open(output, 'a', encoding='utf-8') as f:
for text in results:
f.write(text[0] + '\n')
try:
with open(file, 'r', encoding='utf-8') as f:
text_batch = []
text = f.readline()
while not is_terminated():
if len(text_batch) == batch_size:
translate_and_write(text_batch)
text_batch = []
line = f.readline()
if not line:
if text:
text_batch.append(text)
if text_batch:
translate_and_write(text_batch)
break
if len(text + line) <= max_len:
text += line
else:
text_batch.append(text)
text = line
except UnicodeDecodeError:
print(f'Error decoding file: {file}. Please ensure that the file is encoded in UTF-8.')
def translate_epub(file, output, max_len, batch_size, translate_batch, is_terminated):
def translate_and_replace(text_batch, file_text):
texts = [text for text, _, _ in text_batch]
texts = translate_batch(texts)
if texts is None:
return ''
new_file_text = ''
for text, (_, matches, pre_end) in zip(texts, text_batch):
if text is not None:
text = text[0].split('\n')
if len(text) < len(matches):
text += [''] * (len(matches) - len(text))
else:
text = text[:len(matches)-1] + ['<br/>'.join(text[len(matches)-1:])]
for t, match in zip(text, matches):
t = match.group(0).replace(match.group(2), t)
new_file_text += file_text[pre_end:match.start()] + t
pre_end = match.end()
return new_file_text
def clean_text(text):
text=re.sub(r'<rt[^>]*?>.*?</rt>','',text)
text=re.sub(r'<[^>]*>|\n','',text)
return text
if os.path.exists('./temp'):
shutil.rmtree('./temp')
with zipfile.ZipFile(file, 'r') as f:
f.extractall('./temp')
files = glob.glob('./temp/**/*html', recursive=True)
for file in files:
if not os.path.isfile(file):
continue
try:
print(f'Translating {file}...')
with open(file, 'r', encoding='utf-8') as f:
file_text = f.read()
matches = re.finditer(r'<(h[1-6]|p|a|title).*?>(.+?)</\1>',file_text,flags=re.DOTALL)
if not matches:
continue
new_file_text = ''
text_batch = []
group = []
text = ''
pre_end = 0
for match in matches:
if is_terminated():
break
if len(text_batch) == batch_size:
new_file_text += translate_and_replace(text_batch, file_text)
text_batch = []
if len(text + match.group(2)) <= max_len:
new_text = clean_text(match.group(2))
if new_text:
group.append(match)
text += '\n' + new_text
else:
text_batch.append((text, group, pre_end))
pre_end = group[-1].end()
new_text = clean_text(match.group(2))
if new_text:
group = [match]
text = clean_text(match.group(2))
else:
group = []
text = ''
if text:
text_batch.append((text, group, pre_end))
if text_batch:
new_file_text += translate_and_replace(text_batch, file_text)
new_file_text += file_text[group[-1].end():]
if new_file_text:
with open(file, 'w', encoding='utf-8') as f:
f.write(new_file_text)
except UnicodeDecodeError:
print(f'Error decoding file: {file}. Please ensure that the file is encoded in UTF-8.')
if not is_terminated():
with zipfile.ZipFile(output, 'w', zipfile.ZIP_DEFLATED) as f:
for file_path in glob.glob(f'./temp/**', recursive=True):
if not os.path.isdir(file_path):
relative_path = os.path.relpath(file_path, './temp')
f.write(file_path, relative_path)
shutil.rmtree('./temp')
class Translator:
def __init__(self, model_dir, device='cpu'):
self._is_terminated = False
with open(f'{model_dir}/config.json', 'r', encoding='utf-8') as f:
self.config = json.load(f)
self.model = init_model(self.config['vocab_size'][0], self.config['vocab_size'][1],
self.config['n_layers'], self.config['d_model'],
self.config['d_ff'], self.config['n_heads']).to(device)
self.model.load_state_dict(torch.load(f'{model_dir}/model.pth', map_location=device))
self.model.eval()
self.src_tokenizer = getattr(tokenizer, self.config['tokenizer'][0], None)
self.tgt_tokenizer = getattr(tokenizer, self.config['tokenizer'][1], None)
ic_names = self.config.get('input_cleaners', None)
if ic_names is None:
ic_names = [self.config['cleaner']]
oc_names = self.config.get('output_cleaners', [])
self.input_cleaners = [getattr(cleaner, c, None) for c in ic_names]
self.output_cleaners = [getattr(cleaner, c, None) for c in oc_names]
self.encode, _ = self.src_tokenizer(f'{model_dir}/{self.config["vocab_path"][0]}')
_, self.decode = self.tgt_tokenizer(f'{model_dir}/{self.config["vocab_path"][1]}')
def is_terminated(self):
return self._is_terminated
def terminate(self):
self._is_terminated = True
def translate(self, text, beam_size=3, device='cpu', input_cleaner=None, output_cleaner=None):
text = self.translate_batch([text], beam_size, device, input_cleaner, output_cleaner)
if text:
return text[0]
return None
def translate_batch(self, text, beam_size=3, device='cpu', input_cleaner=None, output_cleaner=None):
bos_idx = self.config['bos_idx']
eos_idx = self.config['eos_idx']
pad_idx = self.config['pad_idx']
if self.input_cleaners is not None:
for c in self.input_cleaners:
text = [c(text_single) for text_single in text]
if input_cleaner:
text = [getattr(cleaner, input_cleaner)(text_single) for text_single in text]
src_tokens = rnn_utils.pad_sequence((torch.LongTensor([bos_idx] + self.encode(t) + [eos_idx]) for t in text),
batch_first=True, padding_value=pad_idx).to(device)
src_mask = (src_tokens != pad_idx).unsqueeze(-2).to(device)
results, _ = beam_search(self.model.to(device), src_tokens, src_mask, self.config['max_len'][1],
pad_idx, bos_idx, eos_idx, beam_size, device, self.is_terminated)
if results is None:
return None
texts_last = []
for result_idx in results:
texts = []
for result in result_idx:
index_of_eos = result.index(2) if 2 in result else len(result)
result = result[:index_of_eos + 1]
text = self.decode(result)
for c in self.output_cleaners:
text = c(text)
if output_cleaner:
text = getattr(cleaner, output_cleaner)(text)
texts.append(text)
texts_last.append(texts)
return texts_last
def translate_txt(self, file, output, beam_size=3, device='cpu', input_cleaner=None, output_cleaner=None, batch_size=1):
def _translate_batch(text):
return self.translate_batch(text, beam_size, device, input_cleaner, output_cleaner)
translate_txt(file, output, self.config['max_len'][0], batch_size, _translate_batch, self.is_terminated)
def translate_epub(self, file, output, beam_size=3, device='cpu', input_cleaner=None, output_cleaner=None, batch_size=1):
def _translate_batch(text):
return self.translate_batch(text, beam_size, device, input_cleaner, output_cleaner)
translate_epub(file, output, self.config['max_len'][0], batch_size, _translate_batch, self.is_terminated)
class SakuraTranslator:
def __init__(self, url):
self._is_terminated = False
self.url = url
self.translate('こんにちは')
def translate(self, text, input_cleaner=None, output_cleaner=None, **kwargs):
if input_cleaner:
text = getattr(cleaner, input_cleaner)(text)
data = {
'prompt': f'<reserved_106>将下面的日文文本翻译成中文:{text}<reserved_107>',
'max_new_tokens': 1024,
'do_sample': True,
'temperature': 0.1,
'top_p': 0.3,
'repetition_penalty': 1.0,
'num_beams': 1,
'frequency_penalty': 0.05,
'top_k': 40,
'seed': -1
}
resp = requests.post(f'{self.url}/api/v1/generate', json=data).json()
text = resp['results'][0]['text']
if output_cleaner:
text = getattr(cleaner, output_cleaner)(text)
return [text]
def is_terminated(self):
return self._is_terminated
def terminate(self):
self._is_terminated = True
def translate_txt(self, file, output, input_cleaner=None, output_cleaner=None, **kwargs):
def translate_batch(text):
return [self.translate(text[0], input_cleaner, output_cleaner)]
translate_txt(file, output, 768, 1, translate_batch, self.is_terminated)
def translate_epub(self, file, output, input_cleaner=None, output_cleaner=None, **kwargs):
def translate_batch(text):
return [self.translate(text[0], input_cleaner, output_cleaner)]
translate_epub(file, output, 768, 1, translate_batch, self.is_terminated)