-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_mine.py
335 lines (266 loc) · 11.3 KB
/
model_mine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
from resnet import resnet50, resnet18
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm)
return out
class Non_local(nn.Module):
def __init__(self, in_channels, reduc_ratio=2):
super(Non_local, self).__init__()
self.in_channels = in_channels
self.inter_channels = reduc_ratio//reduc_ratio
self.g = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1,
padding=0),
)
self.W = nn.Sequential(
nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.in_channels),
)
nn.init.constant_(self.W[1].weight, 0.0)
nn.init.constant_(self.W[1].bias, 0.0)
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
'''
:param x: (b, c, t, h, w)
:return:
'''
batch_size = x.size(0)
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
f = torch.matmul(theta_x, phi_x)
N = f.size(-1)
# f_div_C = torch.nn.functional.softmax(f, dim=-1)
f_div_C = f / N
y = torch.matmul(f_div_C, g_x)
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
W_y = self.W(y)
z = W_y + x
return z
# #####################################################################
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
init.zeros_(m.bias.data)
elif classname.find('BatchNorm1d') != -1:
init.normal_(m.weight.data, 1.0, 0.01)
init.zeros_(m.bias.data)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
init.normal_(m.weight.data, 0, 0.001)
if m.bias:
init.zeros_(m.bias.data)
class visible_module(nn.Module):
def __init__(self, arch='resnet50', share_net=1):
super(visible_module, self).__init__()
model_v = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.share_net = share_net
if self.share_net == 0:
pass
else:
self.visible = nn.ModuleList()
self.visible.conv1 = model_v.conv1
self.visible.bn1 = model_v.bn1
self.visible.relu = model_v.relu
self.visible.maxpool = model_v.maxpool
if self.share_net > 1:
for i in range(1, self.share_net):
setattr(self.visible,'layer'+str(i), getattr(model_v,'layer'+str(i)))
def forward(self, x):
if self.share_net == 0:
return x
else:
x = self.visible.conv1(x)
x = self.visible.bn1(x)
x = self.visible.relu(x)
x = self.visible.maxpool(x)
if self.share_net > 1:
for i in range(1, self.share_net):
x = getattr(self.visible, 'layer'+str(i))(x)
return x
class thermal_module(nn.Module):
def __init__(self, arch='resnet50', share_net=1):
super(thermal_module, self).__init__()
model_t = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.share_net = share_net
if self.share_net == 0:
pass
else:
self.thermal = nn.ModuleList()
self.thermal.conv1 = model_t.conv1
self.thermal.bn1 = model_t.bn1
self.thermal.relu = model_t.relu
self.thermal.maxpool = model_t.maxpool
if self.share_net > 1:
for i in range(1, self.share_net):
setattr(self.thermal,'layer'+str(i), getattr(model_t,'layer'+str(i)))
def forward(self, x):
if self.share_net == 0:
return x
else:
x = self.thermal.conv1(x)
x = self.thermal.bn1(x)
x = self.thermal.relu(x)
x = self.thermal.maxpool(x)
if self.share_net > 1:
for i in range(1, self.share_net):
x = getattr(self.thermal, 'layer'+str(i))(x)
return x
class base_resnet(nn.Module):
def __init__(self, arch='resnet50', share_net=1):
super(base_resnet, self).__init__()
model_base = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
model_base.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.share_net = share_net
if self.share_net == 0:
self.base = model_base
else:
self.base = nn.ModuleList()
if self.share_net > 4:
pass
else:
for i in range(self.share_net, 5):
setattr(self.base,'layer'+str(i), getattr(model_base,'layer'+str(i)))
def forward(self, x):
if self.share_net == 0:
x = self.base.conv1(x)
x = self.base.bn1(x)
x = self.base.relu(x)
x = self.base.maxpool(x)
x = self.base.layer1(x)
x = self.base.layer2(x)
x = self.base.layer3(x)
x = self.base.layer4(x)
return x
elif self.share_net > 4:
return x
else:
for i in range(self.share_net, 5):
x = getattr(self.base, 'layer'+str(i))(x)
return x
class embed_net(nn.Module):
def __init__(self, class_num, no_local= 'off', gm_pool = 'on', arch='resnet50', share_net=1, pcb='on',local_feat_dim=256, num_strips=6):
super(embed_net, self).__init__()
self.thermal_module = thermal_module(arch=arch, share_net=share_net)
self.visible_module = visible_module(arch=arch, share_net=share_net)
self.base_resnet = base_resnet(arch=arch, share_net=share_net)
self.non_local = no_local
self.pcb = pcb
if self.non_local =='on':
pass
pool_dim = 2048
self.l2norm = Normalize(2)
self.gm_pool = gm_pool
if self.pcb == 'on':
self.num_stripes=num_strips
local_conv_out_channels=local_feat_dim
self.local_conv_list = nn.ModuleList()
for _ in range(self.num_stripes):
conv = nn.Conv2d(pool_dim, local_conv_out_channels, 1)
conv.apply(weights_init_kaiming)
self.local_conv_list.append(nn.Sequential(
conv,
nn.BatchNorm2d(local_conv_out_channels),
nn.ReLU(inplace=True)
))
self.fc_list = nn.ModuleList()
for _ in range(self.num_stripes):
fc = nn.Linear(local_conv_out_channels, class_num)
init.normal_(fc.weight, std=0.001)
init.constant_(fc.bias, 0)
self.fc_list.append(fc)
else:
self.bottleneck = nn.BatchNorm1d(pool_dim)
self.bottleneck.bias.requires_grad_(False) # no shift
self.classifier = nn.Linear(pool_dim, class_num, bias=False)
self.bottleneck.apply(weights_init_kaiming)
self.classifier.apply(weights_init_classifier)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x1, x2, modal=0):
if modal == 0:
x1 = self.visible_module(x1)
x2 = self.thermal_module(x2)
x = torch.cat((x1, x2), 0)
elif modal == 1:
x = self.visible_module(x1)
elif modal == 2:
x = self.thermal_module(x2)
# shared block
if self.non_local == 'on':
pass
else:
x = self.base_resnet(x)
if self.pcb == 'on':
feat = x
assert feat.size(2) % self.num_stripes == 0
stripe_h = int(feat.size(2) / self.num_stripes)
local_feat_list = []
logits_list = []
for i in range(self.num_stripes):
# shape [N, C, 1, 1]
# average pool
#local_feat = F.avg_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],(stripe_h, feat.size(-1)))
if self.gm_pool == 'on':
# gm pool
local_feat = feat[:, :, i * stripe_h: (i + 1) * stripe_h, :]
b, c, h, w = local_feat.shape
local_feat = local_feat.view(b,c,-1)
p = 10.0 # regDB: 10.0 SYSU: 3.0
local_feat = (torch.mean(local_feat**p, dim=-1) + 1e-12)**(1/p)
else:
# average pool
#local_feat = F.avg_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],(stripe_h, feat.size(-1)))
local_feat = F.max_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],(stripe_h, feat.size(-1)))
# shape [N, c, 1, 1]
local_feat = self.local_conv_list[i](local_feat.view(feat.size(0),feat.size(1),1,1))
# shape [N, c]
local_feat = local_feat.view(local_feat.size(0), -1)
local_feat_list.append(local_feat)
if hasattr(self, 'fc_list'):
logits_list.append(self.fc_list[i](local_feat))
feat_all = [lf for lf in local_feat_list]
feat_all = torch.cat(feat_all, dim=1)
if self.training:
return local_feat_list, logits_list, feat_all
else:
return self.l2norm(feat_all)
else:
if self.gm_pool == 'on':
b, c, h, w = x.shape
x = x.view(b, c, -1)
p = 3.0
x_pool = (torch.mean(x**p, dim=-1) + 1e-12)**(1/p)
else:
x_pool = self.avgpool(x)
x_pool = x_pool.view(x_pool.size(0), x_pool.size(1))
feat = self.bottleneck(x_pool)
if self.training:
return x_pool, self.classifier(feat)#, scores
else:
return self.l2norm(x_pool), self.l2norm(feat)