-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgetTumorRand.m
188 lines (177 loc) · 6.33 KB
/
getTumorRand.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
function [tumorPT,tumorCT,rtsPT,rtsCT,zSlices] = ...
getTumorRand(PT,PTscanNum_old,CT,vox,minRegionSize)
%"getTumor"
% converts RT-structures to tumors for synthetic lesions
%
% CRS, 08/01/2013
%
%Usage:
% [tumorPT,tumorCT,rtsPT,rtsCT,zSlices] = getTumor(PTscanNum,CTscanNum,minRegionSize)
% PTscanNum = PET scan number in CERR
% CTscanNum = CT scan number in CERR
% minRegionSize = smallest allowable 3D RT-structure
%
% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.
%
% This file is part of The Computational Environment for Radiotherapy Research (CERR).
%
% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.
%
% CERR has been financially supported by the US National Institutes of Health under multiple grants.
%
% CERR is distributed under the terms of the Lesser GNU Public License.
%
% This version of CERR is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
% See the GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with CERR. If not, see <http://www.gnu.org/licenses/>.%
%
%% Get Tumor
global stateS planC
indexS = planC{end};
randTumor.vox.FOV = vox.pet.fov(1);
randTumor.vox.Mat = vox.pet.nxn(1);
randTumor.vox.MatZ = vox.petOut.nxn(3);
randTumor.vox.xy = randTumor.vox.FOV/randTumor.vox.Mat; % voxel XY size in mm
randTumor.vox.z = 3.27; % voxel Z size in mm
randTumor.Nmean = 8; % Number of Tumors
randTumor.Rmean.xy = 25/randTumor.vox.xy; % Mean distance in mm from Tumor 1
randTumor.Rmean.z = 25/randTumor.vox.z; % Mean distance in mm from Tumor 1
randTumor.Smean.xy = 10/randTumor.vox.xy; % Mean spread in mm
randTumor.Smean.z = 10/randTumor.vox.z; % Mean spread in mm
randTumor.SUVmean = 2.8; % Mean SUV of tumor
randTumor.Thresh = 1; % Backgroud threshold
randTumor.vox
[ Tref, mTref ] = tumorGen( randTumor );
[ Trot, mTrot ] = rotateTumor( Tref , randTumor );
maskPT = PT;
maskPT(maskPT > 0.1) = 1;
maskPT(maskPT <= 0.1) = 0;
for i = 1:randTumor.vox.MatZ
maskPT(:,:,i) = double(imfill(maskPT(:,:,i),'holes'));
end
flag = 1;
while (flag ~= 0)
[ T, mT ] = translateTumor( Trot, maskPT, randTumor );
if (sum(mT(:)) == 0)
flag = 1;
else
tmpT = mT + maskPT;
tmpT(tmpT > 0) = 1;
flag = sum(tmpT(:)-maskPT(:));
end
fprintf('Sum of residual = %d\n',flag)
end
zSlices = [];
for i = 1:randTumor.vox.MatZ
if (sum(sum(maskPT(:,:,i))) > 0);
zSlices = [zSlices i];
end
end
rtsPT = PT(:,:,zSlices);
rtsCT = (CT(:,:,zSlices)+1000)/1000;
tumorPT = T(:,:,zSlices);
tumorCTtmp = zeros([ vox.ct.nxn(1:2) length(zSlices) ]);
for i = 1:length(zSlices)
tumorCTtmp(:,:,i) = ...
imresize(T(:,:,zSlices(i)),vox.pet.xyz(1)/vox.ct.xyz(1),'cubic');
end
tumorCTtmp(tumorCTtmp < 0.05) = 0;
tumorCT = zeros([ vox.ct.nxn(1:2) length(zSlices) ]);
if ( size(tumorCTtmp,1) > vox.ct.nxn(1) )
xA = round(( size(tumorCTtmp,2) - vox.ct.nxn(2) )/2) + 1;
xB = xA + vox.ct.nxn(2) - 1;
yA = round(( size(tumorCTtmp,1) - vox.ct.nxn(1) )/2) + 1;
yB = yA + vox.ct.nxn(1) - 1;
tumorCT = tumorCTtmp(yA:yB,xA:xB,:);
else
xA = round(( vox.ct.nxn(2) - size(tumorCTtmp,2) )/2) + 1;
xB = xA + size(tumorCTtmp,2) - 1;
yA = round(( vox.ct.nxn(1) - size(tumorCTtmp,1) )/2) + 1;
yB = yA + size(tumorCTtmp,1) - 1;
tumorCT(yA:yB,xA:xB,:) = tumorCTtmp;
end
% % Get Structures and define PET tumor
% sumMaskPT = [];
% numStr = length(planC{indexS.structures});
% if (numStr >= 1)
% RTSname = lower({planC{indexS.structures}.structureName});
% % Get slices
% RTSname{:,:}
% sumMaskPT = zeros(vox.pet.nxn);
% for structNum = 1:numStr
% uSlices = []; maskRTS = []; maskRTStmp = [];
% [rasterSeg, planC, isError] = getRasterSegments(structNum,planC);
% if isempty(rasterSeg)
% warning('Could not create conotour.')
% fprintf('\tInvalid Structure: %d ... \n',structNum);
% continue
% % return
% end
% [maskRTStmp, uSlices] = rasterToMask(rasterSeg, PTscanNum_old, planC);
% maskRTS = double(maskRTStmp);
% maskRTS = bwareaopen(maskRTS,minRegionSize,6); % remove stray contour fragments
%
% if (structNum == 1)
% sumMaskPT(:,:,uSlices) = maskRTS;
% else
% sumMaskPT(:,:,uSlices) = sumMaskPT(:,:,uSlices) + maskRTS;
% end
%
% if (structNum == 1)
% minSlice = uSlices(1);
% maxSlice = uSlices(end);
% else
% if (minSlice > uSlices(1)), minSlice = uSlices(1); end
% if (maxSlice < uSlices(end)), maxSlice = uSlices(end); end
% end
% end
% if (minSlice > 2)
% minSlice = minSlice - 2;
% else
% minSlice = 1;
% end
% if (maxSlice + 2 < vox.pet.nxn(3))
% maxSlice = maxSlice + 2;
% else
% maxSlice = vox.pet.nxn(3);
% end
% zSlices = minSlice:maxSlice;
% tumorPT = sumMaskPT(:,:,zSlices);
% else
% zSlices = 1:vox.pet.nxn(3);
% tumorPT = zeros(vox.pet.nxn);
% end
% rtsPT = PT(:,:,zSlices);
%
% % Get CT tumor
% % loads PT tumor masks and upsacles to CT voxel size
% for i = 1:length(zSlices)
% tumorCTtmp(:,:,i) = imresize(tumorPT(:,:,i),vox.pet.xyz(1)/vox.ct.xyz(1),'cubic');
% end
% tumorCTtmp(tumorCTtmp < 0.05) = 0;
%
% tumorCT = zeros([ vox.ct.nxn(1:2) length(zSlices) ]);
% if ( size(tumorCTtmp,1) > vox.ct.nxn(1) )
% xA = round(( size(tumorCTtmp,2) - vox.ct.nxn(2) )/2) + 1;
% xB = xA + vox.ct.nxn(2) - 1;
% yA = round(( size(tumorCTtmp,1) - vox.ct.nxn(1) )/2) + 1;
% yB = yA + vox.ct.nxn(1) - 1;
% tumorCT = tumorCTtmp(yA:yB,xA:xB,:);
% else
% xA = round(( vox.ct.nxn(2) - size(tumorCTtmp,2) )/2) + 1;
% xB = xA + size(tumorCTtmp,2) - 1;
% yA = round(( vox.ct.nxn(1) - size(tumorCTtmp,1) )/2) + 1;
% yB = yA + size(tumorCTtmp,1) - 1;
% tumorCT(yA:yB,xA:xB,:) = tumorCTtmp;
% end
%
% rtsCT = (CT(:,:,zSlices)+1000)/1000;
end