forked from Michael-Gong/visualization-script-for-LPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
work_draw_re.py
81 lines (70 loc) · 2.83 KB
/
work_draw_re.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import sdf
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
#from numpy import ma
from matplotlib import colors, ticker, cm
from matplotlib.mlab import bivariate_normal
from optparse import OptionParser
import os
######## Constant defined here ########
pi = 3.1415926535897932384626
q0 = 1.602176565e-19 # C
m0 = 9.10938291e-31 # kg
v0 = 2.99792458e8 # m/s^2
kb = 1.3806488e-23 # J/K
mu0 = 4.0e-7*pi # N/A^2
epsilon0 = 8.8541878176203899e-12 # F/m
h_planck = 6.62606957e-34 # J s
wavelength= 1.0e-6
frequency = v0*2*pi/wavelength
exunit = m0*v0*frequency/q0
bxunit = m0*frequency/q0
denunit = frequency**2*epsilon0*m0/q0**2
print('electric field unit: '+str(exunit))
print('magnetic field unit: '+str(bxunit))
print('density unit nc: '+str(denunit))
font = {'family' : 'monospace',
'style' : 'normal',
'color' : 'black',
'weight' : 'normal',
'size' : 14,
}
######### Parameter you should set ###########
start = 20 # start time
stop = 24 # end time
step = 1 # the interval or step
# if (os.path.isdir('jpg') == False):
# os.mkdir('jpg')
######### Script code drawing figure ################
for n in range(start,stop+step,step):
#### header data ####
px = np.loadtxt('./txt/px_'+str(n).zfill(4)+'sdf.txt')
py = np.loadtxt('./txt/py_'+str(n).zfill(4)+'sdf.txt')
grid_x = np.loadtxt('./txt/grid_x_'+str(n).zfill(4)+'sdf.txt')
grid_y = np.loadtxt('./txt/grid_y_'+str(n).zfill(4)+'sdf.txt')
work_x = np.loadtxt('./txt/work_x_'+str(n).zfill(4)+'sdf.txt')
work_y = np.loadtxt('./txt/work_y_'+str(n).zfill(4)+'sdf.txt')
color_index = (px**2.0+py**2.0+1)**0.5
# plt.subplot()
plt.scatter(work_x, work_y, c=color_index, s=3, cmap='rainbow', edgecolors='None')
cbar=plt.colorbar( ticks=np.linspace(np.min(color_index), np.max(color_index), 5) )
cbar.set_label(r'$\gamma$',fontdict=font)
plt.plot(np.linspace(-500,900,1001), np.zeros([1001]),':k',linewidth=1.5)
plt.plot(np.zeros([1001]), np.linspace(-500,900,1001),':k',linewidth=1.5)
plt.plot(np.linspace(-500,900,1001), np.linspace(-500,900,1001),':k',linewidth=1.5)
# plt.legend(loc='upper right')
plt.xlim(-500,900)
plt.ylim(-500,900)
plt.xlabel(r'$Work_x [m_ec^2]$',fontdict=font)
plt.ylabel(r'$Work_y [m_ec^2]$',fontdict=font)
#plt.xticks(fontsize=20); plt.yticks(fontsize=20);
#plt.title('electron at y='+str(round(y[n,0]/2/np.pi,4)),fontdict=font)
#plt.show()
#lt.figure(figsize=(100,100))
fig = plt.gcf()
fig.set_size_inches(8, 6.5)
fig.savefig('./part_fig/'+str(n).zfill(4)+'.png',format='png',dpi=80)
plt.close("all")
print('finised '+str(round(100.0*(n-start+step)/(stop-start+step),4))+'%')