forked from Michael-Gong/visualization-script-for-LPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
en_plot_2.py
157 lines (138 loc) · 6 KB
/
en_plot_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors, ticker, cm
import sdf
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import os
from numpy import ma
from matplotlib import colors, ticker, cm
from matplotlib.mlab import bivariate_normal
from matplotlib import rc
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
## for Palatino and other serif fonts use:
rc('font',**{'family':'serif','serif':['Palatino']})
rc('text', usetex=True)
pi = 3.1415926535897932384626
q0 = 1.602176565e-19 # C
m0 = 9.10938291e-31 # kg
v0 = 2.99792458e8 # m/s^2
kb = 1.3806488e-23 # J/K
mu0 = 4.0e-7*pi # N/A^2
epsilon0 = 8.8541878176203899e-12 # F/m
h_planck = 6.62606957e-34 # J s
wavelength= 1.0e-6
frequency = v0*2*pi/wavelength
exunit = m0*v0*frequency/q0
bxunit = m0*frequency/q0
denunit = frequency**2*epsilon0*m0/q0**2
print 'electric field unit: '+str(exunit)
print 'magnetic field unit: '+str(bxunit)
print 'density unit nc: '+str(denunit)
font = {'family' : 'Helvetic',
'color' : 'black',
'weight' : 'normal',
'size' : 16,
}
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
data1 = sdf.read("./Datan1dp/0029.sdf",dict=True)
data2 = sdf.read("./Datan2dp/0029.sdf",dict=True)
data4 = sdf.read("./Datan4dp/0029.sdf",dict=True)
data8 = sdf.read("./Datan8dp/0029.sdf",dict=True)
data16 = sdf.read("./Datan16dp/0029.sdf",dict=True)
data32 = sdf.read("./Datan32dp/0029.sdf",dict=True)
data64 = sdf.read("./Datan64dp/0029.sdf",dict=True)
header=data1['Header']
time=header['time']
plt.subplots_adjust(left=0.05,right=0.95,bottom=0.1,top=0.95,wspace=0.25,hspace=0.3)
plt.subplot(1,3,1)
name='electron'
en_Z1 = data1['dist_fn/en/'+name].data[:,0,0]
dist_x1 = data1['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z2 = data4['dist_fn/en/'+name].data[:,0,0]
dist_x2 = data4['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z3 = data16['dist_fn/en/'+name].data[:,0,0]
dist_x3 = data16['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z4 = data64['dist_fn/en/'+name].data[:,0,0]
dist_x4 = data64['Grid/en/'+name].data[0]/(q0*1.0e6)
plt.plot(dist_x4, en_Z4, label=r"$n_e=0.64n_c$", linewidth=2)
plt.plot(dist_x3, en_Z3, label=r"$n_e=0.16n_c$", linewidth=2)
plt.plot(dist_x2, en_Z2, label=r"$n_e=0.04n_c$", linewidth=2)
plt.plot(dist_x1, en_Z1, label=r"$n_e=0.01n_c$", linewidth=2)
plt.legend(loc='upper right',framealpha=1.0,markerscale=4.0,fontsize=20.0)
#### manifesting colorbar, changing label and axis properties ####
plt.xlim(0.0,125)
plt.ylim(pow(10,8),pow(10,18))
plt.text(8,pow(10,17),r'(a) Electron',fontsize=20,color='k')
#cbar=plt.colorbar(ticks=np.linspace(np.min(theta_en_Z1.T), np.max(theta_en_Z1.T), 5))
#cbar.set_label(r"$\displaystyle log_{10}dN/d\theta dE$ [A.U.]", fontdict=font)
plt.yscale('log')
plt.xlabel("Energy [MeV]",fontdict=font)
plt.ylabel("dN/dE [A.U.]",fontdict=font)
plt.xticks(fontsize=16); plt.yticks(fontsize=16);
plt.title(name+' at '+str(round(time/1.0e-15,6))+' fs',fontdict=font)
#plt1 = plt.twinx()
#plt1.plot(dist_x,np.sum(theta_en_Z1,axis=1),'-y',linewidth=2.5)
plt.subplot(1,3,2)
name='carbon'
en_Z1 = data1['dist_fn/en/'+name].data[:,0,0]
dist_x1 = data1['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z2 = data4['dist_fn/en/'+name].data[:,0,0]
dist_x2 = data4['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z3 = data16['dist_fn/en/'+name].data[:,0,0]
dist_x3 = data16['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z4 = data64['dist_fn/en/'+name].data[:,0,0]
dist_x4 = data64['Grid/en/'+name].data[0]/(q0*1.0e6)
plt.plot(dist_x4, en_Z4, label=r"$n_e=0.64n_c$", linewidth=2)
plt.plot(dist_x3, en_Z3, label=r"$n_e=0.16n_c$", linewidth=2)
plt.plot(dist_x2, en_Z2, label=r"$n_e=0.04n_c$", linewidth=2)
plt.plot(dist_x1, en_Z1, label=r"$n_e=0.01n_c$", linewidth=2)
plt.legend(loc='upper right',framealpha=1.0,markerscale=4.0,fontsize=20.0)
#### manifesting colorbar, changing label and axis properties ####
plt.xlim(0.0,125)
plt.ylim(pow(10,8),pow(10,18))
plt.text(8,pow(10,17),r'(b) Carbon',fontsize=20,color='k')
#cbar=plt.colorbar(ticks=np.linspace(np.min(theta_en_Z1.T), np.max(theta_en_Z1.T), 5))
#cbar.set_label(r"$\displaystyle log_{10}dN/d\theta dE$ [A.U.]", fontdict=font)
plt.yscale('log')
plt.xlabel("Energy [MeV]",fontdict=font)
plt.ylabel("dN/dE [A.U.]",fontdict=font)
plt.xticks(fontsize=16); plt.yticks(fontsize=16);
plt.title(name+' at '+str(round(time/1.0e-15,6))+' fs',fontdict=font)
#plt1 = plt.twinx()
#plt1.plot(dist_x,np.sum(theta_en_Z1,axis=1),'-y',linewidth=2.5)
plt.subplot(1,3,3)
name='photon'
en_Z1 = data1['dist_fn/en/'+name].data[:,0,0]
dist_x1 = data1['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z2 = data4['dist_fn/en/'+name].data[:,0,0]
dist_x2 = data4['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z3 = data16['dist_fn/en/'+name].data[:,0,0]
dist_x3 = data16['Grid/en/'+name].data[0]/(q0*1.0e6)
en_Z4 = data64['dist_fn/en/'+name].data[:,0,0]
dist_x4 = data64['Grid/en/'+name].data[0]/(q0*1.0e6)
plt.plot(dist_x4, en_Z4, label=r"$n_e=0.64n_c$", linewidth=2)
plt.plot(dist_x3, en_Z3, label=r"$n_e=0.16n_c$", linewidth=2)
plt.plot(dist_x2, en_Z2, label=r"$n_e=0.04n_c$", linewidth=2)
plt.plot(dist_x1, en_Z1, label=r"$n_e=0.01n_c$", linewidth=2)
plt.legend(loc='upper right',framealpha=1.0,markerscale=4.0,fontsize=20.0)
#### manifesting colorbar, changing label and axis properties ####
plt.xlim(0.0,20)
plt.ylim(pow(10,8),pow(10,16))
plt.text(1.48,pow(10,15.2),r'(c) Photon',fontsize=20,color='k')
#cbar=plt.colorbar(ticks=np.linspace(np.min(theta_en_Z1.T), np.max(theta_en_Z1.T), 5))
#cbar.set_label(r"$\displaystyle log_{10}dN/d\theta dE$ [A.U.]", fontdict=font)
plt.yscale('log')
plt.xlabel("Energy [MeV]",fontdict=font)
plt.ylabel("dN/dE [A.U.]",fontdict=font)
plt.xticks(fontsize=16); plt.yticks(fontsize=16);
plt.title(name+' at '+str(round(time/1.0e-15,6))+' fs',fontdict=font)
#plt1 = plt.twinx()
#plt1.plot(dist_x,np.sum(theta_en_Z1,axis=1),'-y',linewidth=2.5)
fig = plt.gcf()
fig.set_size_inches(20, 6)
fig.savefig('./test.png',format='png',dpi=100)
plt.close("all")