-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
326 lines (306 loc) · 16.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include <iostream>
#include <fstream>
#include <chrono>
#include "memory_bound.hpp"
#include "euclide.hpp"
#include "millerRabin.hpp"
#include "pocklington.hpp"
#include "AKS.hpp"
#include "highly_composite.hpp"
#include <unistd.h>
int main(int argc, char** argv){
int opt;
int iter;
unsigned long int n, max, min;
bool first_time = false;
bool all_test_flag = false;
bool aks_flag = false;
bool euclide_flag = false;
bool modulo_flag = false;
bool mem_bound_flag = false;
bool pock_flag = false;
bool miller_flag = false;
bool highly_composite_def_flag = false;
bool highly_composite_naive_flag = false;
//Check si il existe des arguments, si oui recupère le nombre n et le nombre d'iterations
if ( (argc <= 1) || (argv[argc-1] == NULL) || (argv[argc-1][0] == '-') ) {
std::cerr << "No argument provided!" << std::endl;
return 1;
}
else {
iter = atoi(argv[argc-2]);
n = strtoul(argv[argc-1], NULL, 0);
}
// Empeche GetOpt d'afficher des erreurs:
opterr = 0;
// On récupère les options
while ( (opt = getopt(argc, argv, "akeoumpihH")) != -1 ) { // for each option...
switch ( opt ) {
case 'a':
all_test_flag = true;
break;
case 'k':
aks_flag = true;
break;
case 'e':
euclide_flag = true;
break;
case 'o':
modulo_flag = true;
break;
case 'm':
mem_bound_flag = true;
break;
case 'p':
pock_flag = true;
break;
case 'i':
miller_flag = true;
break;
case 'h':
highly_composite_naive_flag = true;
break;
case 'H':
highly_composite_def_flag = true;
break;
case '?': // option inconnue
std::cerr << "Unknown option: '" << char(optopt) << "'!" << std::endl;
break;
}
}
unsigned long int avg = 0;
bool result;
int elapsed_time;
std::chrono::time_point<std::chrono::system_clock> start, end;
//On ouvre les flux des différents fichiers
std::ofstream file1("memory.txt", std::ios::out | std::ios::trunc);
std::ofstream file2("data.txt", std::ios::out | std::ios::app);
std::ofstream file3("result.txt", std::ios::out | std::ios::app);
{
std::cout << "|||||||||||||| Test pour N = " << n << " ||||||||||||||" << std::endl;
//Lance le crible d'Eratosthene si l'option est choisie
if(mem_bound_flag == true || all_test_flag == true) {
unsigned long int n_temp = n;
if(n_temp>1000000000) {
n_temp = 1000000000;
}
std::cout << "==== Memory Bound || Eratosthene sieve ====" << std::endl;
std::list<unsigned long int> liste;
for (int i = 0; i < iter; i++) {
// Entoure la fonction des indications temporelles de début et de fin d'execution (de même pour les autres algorithmes)
start = std::chrono::system_clock::now();
memory_bound(n_temp, &liste);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
avg /= iter;
//Affichage et incription des résultats dans les fichiers (de même pour les autres algorithmes)
file1 << "Eratosthene sieve from 2 to " << n_temp << ":" << std::endl << liste << std::endl;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
std::cout << "Memory used: " << n_temp * sizeof(bool) << " bytes" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test de Pocklington si l'option est choisie
if(pock_flag == true || all_test_flag == true) {
std::cout << "==== Pocklington ====" << '\n';
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = pocklington(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
if(result) {
file3 << "Pocklington " << n << " True" << std::endl;
}else{
file3 << "Pocklington " << n << " False" << std::endl;
}
avg /= iter;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test de Miller-Rabin si l'option est choisie
if(miller_flag == true || all_test_flag == true) {
std::cout << "==== Miller Rabin ====" << '\n';
unsigned long int iterations = 500;
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = millerRabin(n, iterations);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
if(result) {
file3 << "Miller_Rabin " << n << " True" << std::endl;
}else{
file3 << "Miller_Rabin " << n << " False" << std::endl;
}
avg /= iter;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test d'Euclide si l'option est choisie
if(euclide_flag == true || all_test_flag == true) {
std::cout << "==== Computation Bound || Euclide ====" << '\n';
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = computation_bound_euclide(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
if(result) {
file3 << "Computation_Bound_Euclide " << n << " True" << std::endl;
}else{
file3 << "Computation_Bound_Euclide " << n << " False" << std::endl;
}
avg /= iter;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test de Modulo si l'option est choisie
if(modulo_flag == true || all_test_flag == true) {
std::cout << "==== Computation Bound || Modulo ====" << '\n';
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = computation_bound_modulo(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
if(result) {
file3 << "Computation_Bound_Modulo " << n << " True" << std::endl;
}else{
file3 << "Computation_Bound_Modulo " << n << " False" << std::endl;
}
avg /= iter;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test d'AKS si l'option est choisie
if(aks_flag == true || all_test_flag == true) {
std::cout << "==== AKS ====" << '\n';
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = aks(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
if(result) {
file3 << "AKS " << n << " True" << std::endl;
}else{
file3 << "AKS " << n << " False" << std::endl;
}
avg /= iter;
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
}
{ //Lance le test de Nombre hautement composé naive si l'option est choisie
if(highly_composite_naive_flag == true || all_test_flag == true) {
std::cout << "==== highly_composite_naive ====" << std::endl;
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = highly_composite_naive(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
avg /= iter;
if(result) {
file3 << "highly_composite_naive " << n << " True" << std::endl;
}else{
file3 << "highly_composite_naive " << n << " False" << std::endl;
}
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
//Lance le test de Nombre hautement composé définition si l'option est choisie
if(highly_composite_def_flag == true || all_test_flag == true) {
std::cout << "==== highly_composite_def ====" << std::endl;
avg = 0;
for (int i = 0; i < iter; i++) {
start = std::chrono::system_clock::now();
result = highly_composite_def(n);
end = std::chrono::system_clock::now();
elapsed_time = std::chrono::duration_cast<std::chrono::microseconds>(end-start).count();
if (!first_time) {
first_time = true;
max = elapsed_time;
min = max;
}
if (max < elapsed_time) max = elapsed_time;
if (min > elapsed_time) min = elapsed_time;
avg += elapsed_time;
}
avg /= iter;
if(result) {
file3 << "highly_composite_def " << n << " True" << std::endl;
}else{
file3 << "highly_composite_def " << n << " False" << std::endl;
}
std::cout << "Time elapsed average: " << avg << " µs" << std::endl;
file2 << n << " " << avg << " " << min << " " << max << std::endl;
}
}
std::cout << std::endl;
//Fin du programme
return 0;
}