Skip to content

Latest commit

 

History

History
 
 

TreeModel

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Visit QuantNet

Visit QuantNet TreeModel Visit QuantNet 2.0

Name of QuantLet : TreeModel

Published in : Frühsignale für Änderungen von Konjunkturindikatoren durch Analysen von Big Data

Description : 'Decision Tree and Random Forest: Builds a classification tree to predict, wheather
the customer choose the Citrus Hill (CH) or the Minute Maid (MM) Orange Juice. A number of
characteristics is used in order to grow a tree. The second part builds a random forest with the
same dataset. A visualization of the error terms are shown.'

Keywords : 'tree, decision-tree, regression, classification, simulation, random-forest, plot,
graphical representation, visualization'

Author : Daniel Jacob

Example: 
- 1: Tree Model
- 2: Error of the random forests regression

Picture1

Picture2

R Code:

# clear variables and close windows
rm(list = ls(all = TRUE))
graphics.off()

# install and load packages
libraries = c("tree", "ISLR", "randomForest")
lapply(libraries, function(x) if (!(x %in% installed.packages())) {
    install.packages(x)
})
lapply(libraries, library, quietly = TRUE, character.only = TRUE)

# OJ Dataset from the ILSR Package. The data contains 1070 purchases 
# where the customer either purchased Citrus Hill or Minute Maid 
# Orange Juice. A number of characteristics of the customer and product
# are recorded.
data(OJ)
OJ = data.frame(OJ)

# Build a Tree Model with all Regressors to fit Purchase (can either by MM or CH)
tree.oj = tree(Purchase ~ ., OJ)
summary(tree.oj)     # summary of the Classification tree

# Plot 1: Tree Model
plot(tree.oj)
title(paste("Fit of the Regression Tree"))
text(tree.oj)

# Plot 2: Error of the random forests regression
dev.new()
random.oj = randomForest(Purchase ~ ., OJ)
layout(matrix(c(1,2),nrow=1),
       width=c(4,1)) 
par(mar=c(5,4,4,0)) # No margin on the right side
plot(random.oj, main = "Error of the random forests regression")
par(mar=c(5,0,4,2)) # No margin on the left side
plot(c(0,1),type="n", axes=F, xlab="", ylab="")
legend("top", colnames(random.oj$err.rate),col=1:4,cex=0.8,fill=1:4)

# Summary of the random forests regression
print(random.oj)
summary(random.oj) # technical details of the random forests regression