-
Notifications
You must be signed in to change notification settings - Fork 80
/
generate_brick.py
executable file
·1153 lines (1018 loc) · 44.5 KB
/
generate_brick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
from itertools import chain
import os
import brickschema
import importlib
from pathlib import Path
import sys
import csv
import glob
import ontoenv
import pyshacl
from rdflib import Graph, Literal, BNode, URIRef
from rdflib.namespace import XSD
from rdflib.collection import Collection
from bricksrc.ontology import (
define_ontology,
ontology_imports,
define_extension,
BRICK_IRI_VERSION,
)
from bricksrc.env import env
from bricksrc.namespaces import (
BRICK,
BSH,
REC,
RDF,
OWL,
RDFS,
TAG,
SOSA,
SKOS,
QUDT,
VCARD,
SH,
REF,
)
from bricksrc.namespaces import bind_prefixes
from bricksrc.setpoint import setpoint_definitions
from bricksrc.sensor import sensor_definitions
from bricksrc.alarm import alarm_definitions
from bricksrc.status import status_definitions
from bricksrc.command import command_definitions
from bricksrc.parameter import parameter_definitions
from bricksrc.collections import collection_classes
from bricksrc.location import location_subclasses
from bricksrc.equipment import (
equipment_subclasses,
hvac_subclasses,
hvac_valve_subclasses,
valve_subclasses,
security_subclasses,
safety_subclasses,
)
from bricksrc.substances import substances
from bricksrc.relationships import relationships
from bricksrc.quantities import quantity_definitions, get_units
from bricksrc.entity_properties import entity_properties, get_shapes
from bricksrc.deprecations import deprecations
logging.basicConfig(
format="%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
G = brickschema.Graph()
bind_prefixes(G)
A = RDF.type
shaclGraph = Graph()
bind_prefixes(shaclGraph)
intersection_classes = {}
has_tag_restriction_class = {}
shacl_tag_property_shapes = {}
has_exactly_n_tags_shapes = {}
def add_relationships(item, propdefs, graph=G):
for propname, propval in propdefs.items():
if isinstance(propval, list):
for pv in propval:
graph.add((item, propname, pv))
elif not isinstance(propval, dict):
graph.add((item, propname, propval))
def get_units_brick(brick_quantity):
brick_units = G.query(
f"""SELECT ?unit ?symbol ?label WHERE {{
?subquant skos:broader+ <{brick_quantity}> .
?subquant qudt:applicableUnit ?unit .
OPTIONAL {{
?unit qudt:symbol ?symbol .
FILTER(isLiteral(?symbol))
}} .
OPTIONAL {{
?unit rdfs:label ?label .
}}
}}""" # noqa
)
return set(brick_units)
def units_for_quantity(quantity):
"""
Given a Brick Quantity (the full URI), returns the list of applicable units
"""
brick_units = set(G.objects(subject=quantity, predicate=QUDT.applicableUnit))
qudt_units = set(get_units(quantity))
return list(brick_units.union(qudt_units))
def has_label(concept, graph=G):
return len(list(graph.objects(subject=concept, predicate=RDFS.label))) > 0
def add_tags(klass, definition, graph=G):
"""
Adds the definition of tags to the given class. This method adds two
groups of triples.
The first group of triples uses the BRICK.hasAssociatedTag property
to associate the tags with this class. While this is duplicate information,
it is much easier to query for.
The second group of triples uses SHACL-AF rules to generate the appropriate
Brick class from a set of tags. Strict equality of the tag set is required:
if two classes which are *not* related by a subclass relationship exist, but
one class's tags are a strict subset of the other, then under this regime
the subsumed class will *not* be inferred for instances of the class with more
tags.
Args:
klass: the URI of the Brick class to be modeled
definition: a list of BRICK.Tag instances (e.g. TAG.Air)
"""
if len(definition) == 0:
return
for tag in definition:
graph.add((klass, BRICK.hasAssociatedTag, tag))
graph.add((tag, A, BRICK.Tag)) # make sure the tag is declared as such
graph.add(
(tag, RDFS.label, Literal(tag.split("#")[-1], lang="en"))
) # make sure the tag is declared as such
# add SHACL shape
sc = BSH[klass.split("#")[-1] + "_TagShape"]
shaclGraph.add((sc, A, SH.NodeShape))
# G.add((sc, SH.targetSubjectsOf, BRICK.hasTag))
rule = BNode(str(klass) + "TagInferenceRule")
shaclGraph.add((sc, SH.rule, rule))
# define rule
shaclGraph.add((rule, A, SH.TripleRule))
shaclGraph.add((rule, SH.subject, SH.this))
shaclGraph.add((rule, SH.predicate, RDF.type))
shaclGraph.add((rule, SH.object, klass))
# conditions
for tag in definition:
classrule = BNode(f"add_{tag.split('#')[-1]}_to_{klass.split('#')[-1]}")
graph.add((klass, A, SH.NodeShape))
graph.add((klass, SH.rule, classrule))
graph.add((classrule, A, SH.TripleRule))
graph.add((classrule, SH.subject, SH.this))
graph.add((classrule, SH.predicate, BRICK.hasTag))
graph.add((classrule, SH.object, tag))
if tag not in shacl_tag_property_shapes:
cond = BNode(f"has_{tag.split('#')[-1]}_condition")
prop = BNode(f"has_{tag.split('#')[-1]}_tag")
tagshape = BNode()
shaclGraph.add((rule, SH.condition, cond))
shaclGraph.add((cond, SH.property, prop))
shaclGraph.add((prop, SH.path, BRICK.hasTag))
shaclGraph.add((prop, SH.qualifiedValueShape, tagshape))
shaclGraph.add((tagshape, SH.hasValue, tag))
shaclGraph.add(
(prop, SH.qualifiedMinCount, Literal(1, datatype=XSD.integer))
)
# probably don't need the Max count here; addition of duplicate tags should be idempotent
# shaclGraph.add((prop, SH.qualifiedMaxCount, Literal(1)))
shacl_tag_property_shapes[tag] = cond
shaclGraph.add((rule, SH.condition, shacl_tag_property_shapes[tag]))
num_tags = len(definition)
if len(definition) not in has_exactly_n_tags_shapes:
# tag count condition
cond = BSH[f"has_exactly_{num_tags}_tags_condition"]
prop = BNode(f"has_exactly_{num_tags}_tags")
shaclGraph.add((cond, A, OWL.Class))
shaclGraph.add((cond, A, SH.NodeShape))
shaclGraph.add((cond, SH.property, prop))
shaclGraph.add((prop, SH.path, BRICK.hasTag))
shaclGraph.add((prop, SH.minCount, Literal(len(definition))))
shaclGraph.add((prop, SH.maxCount, Literal(len(definition))))
has_exactly_n_tags_shapes[len(definition)] = cond
# generate inference rule
rule = BSH[f"has_exactly_{num_tags}_tags_rule"]
body = BNode(f"has_{num_tags}_tags_body")
shaclGraph.add((rule, A, SH.NodeShape))
shaclGraph.add((rule, SH.targetSubjectsOf, BRICK.hasTag))
shaclGraph.add((rule, SH.rule, body))
shaclGraph.add((body, A, SH.TripleRule))
shaclGraph.add((body, SH.subject, SH.this))
shaclGraph.add((body, SH.predicate, RDF.type))
shaclGraph.add((body, SH.object, cond))
shaclGraph.add((body, SH.condition, cond))
# shaclGraph.add((rule, SH.condition, has_exactly_n_tags_shapes[len(definition)]))
shaclGraph.add((sc, SH.targetClass, has_exactly_n_tags_shapes[len(definition)]))
# ensure that the rule applies to at least one of the base tags that should be on
# most Brick classes
# base_tags = [TAG.Equipment, TAG.Point, TAG.Location, TAG.System, TAG.Solid, TAG.Fluid]
# target_class_tag = [t for t in base_tags if t in definition]
# assert len(target_class_tag) > 0, klass
# shaclGraph.add((sc, SH.targetClass, has_tag_restriction_class[target_class_tag[0]]))
# shaclGraph.add((sc, SH.targetSubjectsOf, BRICK.hasTag))
def define_concept_hierarchy(definitions, typeclasses, broader=None, related=None):
"""
Generates triples to define the SKOS hierarchy of concepts given by
'definitions', which are all instances of the class given by 'typeclass'.
'broader', if provided, is the skos:broader concept
'related', if provided, is the skos:related concept
Currently this is used for Brick Quantities
"""
for concept, defn in definitions.items():
concept = BRICK[concept]
for typeclass in typeclasses:
G.add((concept, A, typeclass))
# mark broader concept if one exists
if broader is not None:
G.add((concept, SKOS.broader, broader))
G.add((broader, SKOS.narrower, concept))
# mark related concept if one exists
if related is not None:
G.add((concept, SKOS.related, related))
G.add((related, SKOS.related, concept))
# define concept hierarchy
# this is a nested dictionary
narrower_defs = defn.get(SKOS.narrower, {})
if narrower_defs is not None and isinstance(narrower_defs, dict):
define_concept_hierarchy(narrower_defs, typeclasses, broader=concept)
related_defs = defn.get(SKOS.related, {})
if related_defs is not None and isinstance(related_defs, dict):
define_concept_hierarchy(related_defs, typeclasses, related=concept)
# handle 'parents' subconcepts (links outside of tree-based hierarchy)
parents = defn.get("parents", [])
assert isinstance(parents, list)
for _parent in parents:
G.add((concept, SKOS.broader, _parent))
# all other key-value pairs in the definition are
# property-object pairs
expected_properties = ["parents", "tags", "substances"]
other_properties = [
prop for prop in defn.keys() if prop not in expected_properties
]
add_relationships(concept, {k: defn[k] for k in other_properties})
def inherit_has_quantity(definitions, parent_quantity=None):
"""
Recursively ensures that the BRICK.hasQuantity annotation is inherited down the
subclass tree unless a subclass already specifies a BRICK.hasQuantity.
"""
for classname, defn in definitions.items():
# Inherit BRICK.hasQuantity from parent if not defined in the current class
if BRICK.hasQuantity not in defn and parent_quantity is not None:
defn[BRICK.hasQuantity] = parent_quantity
# Recursively apply to subclasses
subclassdef = defn.get("subclasses", {})
assert isinstance(subclassdef, dict)
inherit_has_quantity(subclassdef, defn.get(BRICK.hasQuantity, parent_quantity))
def define_classes(definitions, parent, pun_classes=False, graph=G):
"""
Generates triples for the hierarchy given by 'definitions', rooted
at the class given by 'parent'
- class hierarchy ('subclasses')
- tag mappings
- substance + quantity modeling
If pun_classes is True, then create punned instances of the classes
"""
for classname, defn in definitions.items():
classname = BRICK[classname] if not isinstance(classname, URIRef) else classname
# class is a owl:Class
graph.add((classname, A, OWL.Class))
# subclass of parent
graph.add((classname, RDFS.subClassOf, parent))
# add label
class_label = classname.split("#")[-1].replace("_", " ")
if pun_classes:
graph.add((classname, A, classname))
# define mapping to tags if it exists
# "tags" property is a list of URIs naming Tags
taglist = defn.get("tags", [])
assert isinstance(taglist, list)
if len(taglist) == 0:
logging.warning(f"Property 'tags' not defined for {classname}")
add_tags(classname, taglist, graph=graph)
# define class structure
# this is a nested dictionary
subclassdef = defn.get("subclasses", {})
assert isinstance(subclassdef, dict)
define_classes(subclassdef, classname, graph=graph)
# handle 'parents' subclasses (links outside of tree-based hierarchy)
parents = defn.get("parents", [])
assert isinstance(parents, list)
for _parent in parents:
graph.add((classname, RDFS.subClassOf, _parent))
# add SHACL constraints to the class
constraints = defn.get("constraints", {})
assert isinstance(constraints, dict)
define_constraints(constraints, classname, graph=graph)
aliases = defn.get("aliases", [])
assert isinstance(aliases, list)
for alias in aliases:
graph.add((classname, OWL.equivalentClass, alias))
graph.add((alias, A, OWL.Class))
graph.add((alias, A, SH.NodeShape))
graph.add((alias, OWL.equivalentClass, classname))
# find parent class of what the alias is equivalent to, add the RDFS subClassOf properties
parent_classes = list(graph.objects(subject=classname, predicate=RDFS.subClassOf))
for pc in parent_classes:
graph.add((alias, RDFS.subClassOf, pc))
graph.add((alias, BRICK.aliasOf, classname))
# all other key-value pairs in the definition are
# property-object pairs
expected_properties = [
"parents",
"tags",
"substances",
"subclasses",
"constraints",
"aliases",
]
other_properties = [
prop for prop in defn.keys() if prop not in expected_properties
]
for propname in other_properties:
propval = defn[propname]
if isinstance(propval, list):
for pv in propval:
G.add((classname, propname, pv))
else:
G.add((classname, propname, propval))
def define_constraints(constraints, classname, graph=G):
"""
Makes 'classname' a SHACL NodeShape and Class (implicitly targeting all
instances of the class) and defines some PropertyShapes based on 'constraints'
that apply to the nodeshape.
"""
for property_name, property_values in constraints.items():
pnode = BNode()
onode = BNode()
graph.add((classname, A, SH.NodeShape))
graph.add((classname, SH.property, pnode))
graph.add((pnode, SH["path"], property_name))
if isinstance(property_values, URIRef):
graph.add((pnode, SH["class"], property_values))
elif isinstance(property_values, list):
if len(property_values) > 1:
graph.add((pnode, SH["or"], onode))
possible_values = []
for pv in property_values:
pvnode = BNode()
graph.add((pvnode, SH["class"], pv))
possible_values.append(pvnode)
Collection(graph, onode, possible_values)
elif len(property_values) == 1:
graph.add((pnode, SH["class"], property_values[0]))
else:
raise Exception("Do not know how to handle constraints for %s" % classname)
def define_entity_properties(definitions, superprop=None, graph=G):
"""
Defines the EntityProperty relationships and their subproperties.
Like most other generation methods in this file, it can add additional
properties to the EntityProperty instances (like SKOS.definition)
"""
_allowed_annotations = {SH.node, SH.datatype, SH.hasValue, SH["class"]}
for entprop, defn in definitions.items():
assert (
"property_of" in defn
), f"{entprop} missing a 'property_of' annotation so Brick doesn't know where this property can be used"
assert _allowed_annotations.intersection(
defn.keys()
), f"{entprop} missing at least one of {_allowed_annotations} so Brick doesn't know what the values of this property can be"
graph.add((entprop, A, BRICK.EntityProperty))
if superprop is not None:
graph.add((entprop, RDFS.subPropertyOf, superprop))
if "subproperties" in defn:
subproperties = defn.pop("subproperties")
define_entity_properties(subproperties, entprop, graph=graph)
pshape = BSH[f"has{entprop.split('#')[-1]}Shape"]
graph.add((pshape, A, SH.PropertyShape))
graph.add((pshape, SH.path, entprop))
# add the SH annotations above
for annotation in _allowed_annotations:
val = defn.get(annotation)
if val is not None:
val = defn.pop(annotation)
graph.add((pshape, annotation, val))
graph.add((pshape, RDFS.label, Literal(f"has {defn.get(RDFS.label)} property", lang="en")))
# add the entity property as a sh:property on all of the
# other Nodeshapes indicated by "property_of"
shapes = defn.pop("property_of")
if not isinstance(shapes, list):
shapes = [shapes]
for shape in shapes:
graph.add((shape, SH.property, pshape))
for prop, values in defn.items():
if isinstance(values, list):
for pv in values:
graph.add((entprop, prop, pv))
else:
graph.add((entprop, prop, values))
def define_shape_property_property(shape_name, definitions, graph=G):
if "or" in definitions:
or_list = []
for or_node_defn in definitions.pop("or"):
or_node_shape = BNode()
or_list.append(or_node_shape)
define_shape_property_property(or_node_shape, or_node_defn, graph=graph)
or_list_name = BNode()
graph.add((shape_name, SH["or"], or_list_name))
Collection(graph, or_list_name, or_list)
for prop_name, prop_defn in definitions.items():
# check if there is already a property shape for this.
# Only do this is if (a) the property is optional for this shape, and
# (b) there are no further requirements; the existing property shapes
# don't have any min/max counts or additional requirements
if prop_defn.get("optional", False) and len(prop_defn.keys()) == 1:
prop_exists = list(
graph.query(
f"""SELECT ?x {{ ?p sh:property ?p .
?p sh:path {prop_name.n3()} .
FILTER NOT EXISTS {{ ?p sh:minCount ?mc }}
FILTER NOT EXISTS {{ ?p sh:maxCount ?mc }}
}}""" # noqa
)
)
if len(prop_exists) > 0:
graph.add((shape_name, SH.property, prop_exists[0][0]))
continue # continue to next property
ps = BNode()
graph.add((shape_name, SH.property, ps))
graph.add((ps, A, SH.PropertyShape))
graph.add((ps, SH.path, prop_name))
if "import_from" in prop_defn:
fname = prop_defn.pop("import_from")
tmpG = Graph()
tmpG.parse(fname)
res = tmpG.query(f"SELECT ?p ?o WHERE {{ <{prop_name}> ?p ?o }}") # noqa
for p, o in res:
graph.add((prop_name, p, o))
if "optional" in prop_defn:
if not prop_defn.pop("optional"):
graph.add((ps, SH.minCount, Literal(1)))
else:
graph.add((ps, SH.minCount, Literal(1)))
if "datatype" in prop_defn:
dtype = prop_defn.pop("datatype")
graph.add((prop_name, A, OWL.DatatypeProperty))
if dtype == BSH.NumericValue:
graph.add((ps, SH["or"], BSH.NumericValue))
else:
graph.add((ps, SH.datatype, dtype))
elif "values" in prop_defn:
enumeration = BNode()
graph.add((ps, SH["in"], enumeration))
graph.add((ps, SH.minCount, Literal(1)))
Collection(graph, enumeration, map(Literal, prop_defn.pop("values")))
graph.add((prop_name, A, OWL.DatatypeProperty))
else:
graph.add((prop_name, A, OWL.ObjectProperty))
add_relationships(ps, prop_defn, graph=graph)
def define_shape_properties(definitions, graph=G):
"""
Defines the NodeShapes that govern what the values of
EntityProperty relationships should look like. The important
keys are:
- values: defines the set of possible values of this property as an enumeration
- units: verifies that the units of the value are one of the given enumeration.
- unitsFromQuantity: verifies that the units of the value are compatible with the units
for the given Brick quantity
- datatype: specifies the expected kind of data type of prop:value
- properties: defines other epected properties of the Shape. These properties can have
'datatype' or 'values', in addition to other standard properties like
SKOS.definition
Some other usage notes:
- 'units' and 'datatype' should be used together
- 'values' should not be used with units or datatype
"""
for shape_name, defn in definitions.items():
graph.add((shape_name, A, SH.NodeShape))
graph.add((shape_name, A, OWL.Class))
graph.add((shape_name, A, BRICK.EntityPropertyValue))
graph.add((shape_name, RDFS.subClassOf, BSH.ValueShape))
needs_value_properties = ["values", "units", "unitsFromQuantity", "datatype"]
brick_value_shape = BNode()
if any(k in defn for k in needs_value_properties):
graph.add((shape_name, SH.property, brick_value_shape))
graph.add((brick_value_shape, A, SH.PropertyShape))
graph.add((brick_value_shape, SH.path, BRICK.value))
graph.add((brick_value_shape, SH.minCount, Literal(1)))
graph.add((brick_value_shape, SH.maxCount, Literal(1)))
v = BNode()
# prop:value PropertyShape
if "values" in defn:
enumeration = BNode()
graph.add((shape_name, SH.property, brick_value_shape))
graph.add((brick_value_shape, A, SH.PropertyShape))
graph.add((brick_value_shape, SH.path, BRICK.value))
graph.add((brick_value_shape, SH["in"], enumeration))
graph.add((brick_value_shape, SH.minCount, Literal(1)))
vals = defn.pop("values")
if all(map(lambda v: isinstance(v, str), vals)):
Collection(
graph,
enumeration,
map(lambda x: Literal(x, datatype=XSD.string), vals),
)
if all(map(lambda v: isinstance(v, int), vals)):
Collection(
graph,
enumeration,
map(lambda x: Literal(x, datatype=XSD.integer), vals),
)
if all(map(lambda v: isinstance(v, float), vals)):
Collection(
graph,
enumeration,
map(lambda x: Literal(x, datatype=XSD.decimal), vals),
)
else:
Collection(graph, enumeration, map(Literal, vals))
if "units" in defn:
v = BNode()
enumeration = BNode()
graph.add((shape_name, SH.property, v))
graph.add((v, A, SH.PropertyShape))
graph.add((v, SH.path, BRICK.hasUnit))
graph.add((v, SH["in"], enumeration))
graph.add((v, SH.minCount, Literal(1)))
graph.add((v, SH.maxCount, Literal(1)))
Collection(graph, enumeration, defn.pop("units"))
if "unitsFromQuantity" in defn:
v = BNode()
enumeration = BNode()
graph.add((shape_name, SH.property, v))
graph.add((v, A, SH.PropertyShape))
graph.add((v, SH.path, BRICK.hasUnit))
graph.add((v, SH["in"], enumeration))
graph.add((v, SH.minCount, Literal(1)))
graph.add((v, SH.maxCount, Literal(1)))
units = units_for_quantity(defn.pop("unitsFromQuantity"))
assert len(units) > 0, f"Quantity shape {shape_name} has no units"
Collection(graph, enumeration, units)
if "properties" in defn:
prop_defns = defn.pop("properties")
define_shape_property_property(shape_name, prop_defns, graph=graph)
elif "datatype" in defn:
graph.add((shape_name, SH.property, brick_value_shape))
graph.add((brick_value_shape, A, SH.PropertyShape))
graph.add((brick_value_shape, SH.path, BRICK.value))
dtype = defn.pop("datatype")
if dtype == BSH.NumericValue:
graph.add((brick_value_shape, SH["or"], BSH.NumericValue))
else:
graph.add((brick_value_shape, SH.datatype, dtype))
graph.add((brick_value_shape, SH.minCount, Literal(1)))
if "range" in defn:
for prop_name, prop_value in defn.pop("range").items():
if prop_name not in [
"minExclusive",
"minInclusive",
"maxExclusive",
"maxInclusive",
]:
raise Exception(
f"brick:value property {prop_name} not valid" # noqa
)
graph.add((brick_value_shape, SH[prop_name], Literal(prop_value)))
def define_relationships(definitions, superprop=None, graph=G):
"""
Define BRICK relationships
"""
if len(definitions) == 0:
return
for prop, propdefn in definitions.items():
if not isinstance(prop, URIRef):
prop = BRICK[prop]
if superprop is not None:
graph.add((prop, RDFS.subPropertyOf, superprop))
if prop.startswith(BRICK):
graph.add((prop, RDFS.subPropertyOf, BRICK.Relationship))
# define property types
prop_types = propdefn.get(A, [])
assert isinstance(prop_types, list)
for prop_type in prop_types:
graph.add((prop, A, prop_type))
# define any subproperties
subproperties_def = propdefn.get("subproperties", {})
assert isinstance(subproperties_def, dict)
define_relationships(subproperties_def, prop, graph=graph)
# generate a SHACL Property Shape for this relationship if it is a Brick property
if prop.startswith(BRICK):
propshape = BSH[f"{prop[len(BRICK):]}Shape"]
graph.add((propshape, A, SH.PropertyShape))
graph.add((propshape, SH.path, prop))
if "range" in propdefn.keys():
range_defn = propdefn.pop("range")
if isinstance(range_defn, (tuple, list)):
enumeration = BNode()
graph.add((propshape, SH["or"], enumeration))
constraints = []
for cls in range_defn:
constraint = BNode()
graph.add((constraint, SH["class"], cls))
constraints.append(constraint)
Collection(graph, enumeration, constraints)
elif range_defn is not None:
graph.add((propshape, SH["class"], range_defn))
if "datatype" in propdefn.keys():
dtype_defn = propdefn.pop("datatype")
if dtype_defn == BSH.NumericValue:
graph.add((propshape, SH["or"], BSH.NumericValue))
else:
graph.add((propshape, SH.datatype, dtype_defn))
if "domain" in propdefn.keys():
# associate the PropertyShape with all possible subject classes
domains = propdefn.pop("domain")
if not isinstance(domains, list):
domains = [domains]
for domain in domains:
graph.add((domain, SH.property, propshape))
# define other properties of the Brick property
expected_properties = ["subproperties", A]
other_properties = [
prop for prop in propdefn.keys() if prop not in expected_properties
]
add_relationships(prop, {k: propdefn[k] for k in other_properties}, graph=graph)
def add_definitions(graph=G):
"""
Adds definitions for Brick subclasses through SKOS.definitions.
This parses the definitions from ./bricksrc/definitions.csv and
adds it to the graph. If available, adds the source information of
through RDFS.seeAlso.
"""
with open("./bricksrc/definitions.csv", encoding="utf-8") as dictionary_file:
dictionary = csv.reader(dictionary_file)
header = next(dictionary)
# add definitions, citations to the graph
for definition in dictionary:
term = URIRef(definition[0])
if len(definition) > len(header):
raise ValueError(
f"The term '{term}' has more elements than expected. Please check the format."
)
if len(definition[1]):
graph.add((term, SKOS.definition, Literal(definition[1], lang="en")))
if len(definition) > 2 and definition[2]:
try:
graph.add((term, RDFS.seeAlso, URIRef(definition[2])))
except Exception as e:
print(
f"Error processing 'seeAlso' for term '{term}': {e}. The definition provided is: '{definition}'."
)
qstr = """
select ?param where {
?param rdfs:subClassOf* brick:Limit.
}
"""
limit_def_template = "A parameter that places {direction} bound on the range of permitted values of a {setpoint}."
params = [row["param"] for row in graph.query(qstr)]
for param in params:
words = param.split("#")[-1].split("_")
prefix = words[0]
# define "direction" component of Limit definition
if prefix == "Min":
direction = "a lower"
elif prefix == "Max":
direction = "an upper"
else:
prefix = None
direction = "a lower or upper"
# define the "setpoint" component of a Limit definition
if param.split("#")[-1] in ["Max_Limit", "Min_Limit", "Limit"]:
setpoint = "Setpoint"
else:
if prefix:
setpoint = "_".join(words[1:-1])
else:
setpoint = "_".join(words[:-1])
if setpoint.split("_")[-1] != "Setpoint":
# While Limits are a boundary of a Setpoint, the associated
# Setpoint names are not explicit in class's names. Thus needs
# to be explicily added for the definition text.
setpoint = setpoint + "_Setpoint"
logger.info(f"Inferred setpoint: {setpoint}")
limit_def = limit_def_template.format(direction=direction, setpoint=setpoint)
if param != BRICK.Limit: # definition already exists for Limit
graph.add((param, SKOS.definition, Literal(limit_def, lang="en")))
class_exists = graph.query(
f"""select ?class where {{
BIND(brick:{setpoint} as ?class)
?class rdfs:subClassOf* brick:Class.
}}
""" # noqa
).bindings
if not class_exists:
logging.warning(
f"WARNING: {setpoint} does not exist in Brick for {param}." # noqa
)
def handle_deprecations():
for deprecated_term, md in deprecations.items():
term_type = md.get(A)
if term_type:
G.add((deprecated_term, A, term_type))
G.add((deprecated_term, OWL.deprecated, Literal(True)))
# handle subclasses or skos. Only add it as an owl:Class if
# the use of rdfs:subClassOf exists, implying this is a Class
if RDFS.subClassOf in md:
G.add((deprecated_term, A, OWL.Class))
subclasses = md.pop(RDFS.subClassOf)
if subclasses is not None:
if not isinstance(subclasses, list):
subclasses = [subclasses]
for subclass in subclasses:
G.add((deprecated_term, RDFS.subClassOf, subclass))
elif SKOS.narrower in md:
subconcepts = md.pop(SKOS.narrower)
if subconcepts is not None:
if not isinstance(subconcepts, list):
subconcepts = [subconcepts]
for subclass in subconcepts:
G.add((deprecated_term, SKOS.narrower, subclass))
elif SKOS.broader in md:
subconcepts = md.pop(SKOS.broader)
if subconcepts is not None:
if not isinstance(subconcepts, list):
subconcepts = [subconcepts]
for subclass in subconcepts:
G.add((deprecated_term, SKOS.broader, subclass))
G.add((deprecated_term, BRICK.deprecatedInVersion, Literal(md["version"])))
G.add(
(
deprecated_term,
BRICK.deprecationMitigationMessage,
Literal(md["mitigation_message"]),
)
)
G.add((deprecated_term, BRICK.isReplacedBy, md["replace_with"]))
def handle_concept_labels():
"""
Adds labels to all concepts in the Brick namespace, unless they already have one.
Brick concepts are all subclasses of Brick.Entity and subproperties of Brick.Relationship.
If there are two or more labels for a concept, choose one and raise a Warning
"""
concepts = chain(
G.transitive_subjects(RDFS.subClassOf, BRICK.Entity),
G.subjects(A, BRICK.Entity),
G.subjects(A, OWL.ObjectProperty),
G.subjects(A, OWL.DatatypeProperty),
)
for s in concepts:
labels = list(G.objects(s, RDFS.label))
if len(labels) == 0:
G.add((s, RDFS.label, Literal(s.split("#")[-1].replace("_", " "), lang="en")))
elif len(labels) > 1:
logging.warning(f"Multiple labels for {s}: {labels}")
# choose one and remove the others
for to_remove in labels[1:]:
G.remove((s, RDFS.label, to_remove))
logger.info("Beginning BRICK Ontology compilation")
# handle ontology definition
define_ontology(G)
logger.info("Inheriting annotations down the subclass trees")
inherit_has_quantity(setpoint_definitions)
inherit_has_quantity(sensor_definitions)
inherit_has_quantity(alarm_definitions)
inherit_has_quantity(status_definitions)
inherit_has_quantity(command_definitions)
inherit_has_quantity(parameter_definitions)
# Declare root classes
# we keep the definition of brick:Class, which was the root
# class of Brick prior to v1.3.0, in order to maintain backwards
# compatibility with older Brick models. Both brick:Class and
# brick:Entity are root classes
G.add((BRICK.Class, A, OWL.Class)) # < Brick v1.3.0
G.add((BRICK.Entity, A, OWL.Class)) # >= Brick v1.3.0
G.add((BRICK.Tag, A, OWL.Class))
roots = {
"Equipment": {
"tags": [TAG.Equipment],
},
"Location": {
"tags": [TAG.Location],
},
"Point": {"tags": [TAG.Point]},
"Measurable": {"tags": [TAG.Measurable]},
"Collection": {"tags": [TAG.Collection]},
}
define_classes(roots, BRICK.Class) # <= Brick v1.3.0
define_classes(roots, BRICK.Entity) # >= Brick v1.3.0
logger.info("Defining properties")
# define BRICK properties
G.add((BRICK.Relationship, A, OWL.ObjectProperty))
G.add((BRICK.Relationship, RDFS.label, Literal("Relationship", lang="en")))
G.add(
(
BRICK.Relationship,
SKOS.definition,
Literal(
"Super-property of all Brick relationships between entities (Equipment, Location, Point)"
),
)
)
define_relationships(relationships)
# add types to some external properties
G.add((VCARD.hasAddress, A, OWL.ObjectProperty))
G.add((VCARD.Address, A, OWL.Class))
logger.info("Defining Point subclasses")
# define Point subclasses
define_classes(setpoint_definitions, BRICK.Point)
define_classes(sensor_definitions, BRICK.Point)
define_classes(alarm_definitions, BRICK.Point)
define_classes(status_definitions, BRICK.Point)
define_classes(command_definitions, BRICK.Point)
define_classes(parameter_definitions, BRICK.Point)
# make points disjoint
pointclasses = ["Alarm", "Status", "Command", "Setpoint", "Sensor", "Parameter"]
for pc in pointclasses:
for o in filter(lambda x: x != pc, pointclasses):
G.add((BRICK[pc], OWL.disjointWith, BRICK[o]))
logger.info("Defining Equipment, System and Location subclasses")
# define other root class structures
define_classes(location_subclasses, BRICK.Location)
define_classes(equipment_subclasses, BRICK.Equipment)
define_classes(collection_classes, BRICK.Collection)
define_classes(hvac_subclasses, BRICK.HVAC_Equipment)
define_classes(hvac_valve_subclasses, BRICK.HVAC_Equipment)
define_classes(valve_subclasses, BRICK.Equipment)
define_classes(security_subclasses, BRICK.Security_Equipment)
define_classes(safety_subclasses, BRICK.Safety_Equipment)
logger.info("Defining Measurable hierarchy")
# define measurable hierarchy
G.add((BRICK.Measurable, RDFS.subClassOf, BRICK.Entity))
# set up Quantity definition
G.add((BRICK.Quantity, RDFS.subClassOf, SOSA.ObservableProperty))
G.add((BRICK.Quantity, RDFS.subClassOf, QUDT.QuantityKind))
G.add(
(SOSA.ObservableProperty, A, OWL.Class)
) # needs the type declaration to satisfy some checkers
G.add((BRICK.Quantity, RDFS.subClassOf, BRICK.Measurable))
G.add((BRICK.Quantity, A, OWL.Class))
G.add((BRICK.Quantity, RDFS.label, Literal("Quantity", lang="en")))
G.add((BRICK.Quantity, RDFS.subClassOf, SKOS.Concept))
# set up Substance definition
G.add((BRICK.Substance, RDFS.subClassOf, SOSA.FeatureOfInterest))
G.add(
(SOSA.FeatureOfInterest, A, OWL.Class)
) # needs the type declaration to satisfy some checkers
G.add((BRICK.Substance, RDFS.subClassOf, BRICK.Measurable))
G.add((BRICK.Substance, A, OWL.Class))
G.add((BRICK.Substance, RDFS.label, Literal("Substance", lang="en")))
# We make the punning explicit here. Any subclass of brick:Substance
# is itself a substance or quantity. There is one canonical instance of
# each class, which is indicated by referencing the class itself.
#
# bldg:tmp1 a brick:Air_Temperature_Sensor;
# brick:measures brick:Air ,
# brick:Temperature .
#
# This makes Substance metaclasses.
define_concept_hierarchy(substances, [BRICK.Substance])
# this defines the SKOS-based concept hierarchy for BRICK Quantities
define_concept_hierarchy(quantity_definitions, [BRICK.Quantity])
# add any missing skos:narrower implied by skos:broader where the subject
# is defined by the Brick ontology
G.query(
"""CONSTRUCT {
?narrower skos:broader ?broader .
} WHERE {
?broader skos:narrower ?narrower .
?narrower rdf:type/rdfs:subClassOf* brick:Entity
}"""
)
# add any missing skos:broader implied by skos:narrower where the subject
# is defined by the Brick ontology
G.query(
"""CONSTRUCT {
?broader skos:narrower ?narrower .
} WHERE {
?narrower skos:broader ?broader .
?broader rdf:type/rdfs:subClassOf* brick:Entity
}"""
)
# for all Quantities, copy part of the QUDT unit definitions over
res = G.query(
"""SELECT ?quantity ?qudtquant WHERE {
?quantity rdf:type brick:Quantity .
?quantity brick:hasQUDTReference ?qudtquant
}"""
)
logger.info("Adding applicable units")
# this requires two passes to associate the applicable units with
# each of the quantities. The first pass associates Brick quantities
# with QUDT units via the "hasQUDTReference" property; the second pass
# traverses the SKOS broader/narrower hierarchy to inherit associated units
# "up" into the broader concepts.
for r in res:
brick_quant, qudt_quant = r
for unit in get_units(qudt_quant):
G.add((brick_quant, QUDT.applicableUnit, unit))
# the symbols, units, and labels are already defined in the previous pass
for unit, symb, label in get_units_brick(brick_quant):