forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_class.h
516 lines (465 loc) · 19.3 KB
/
custom_class.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#pragma once
#include <ATen/core/builtin_function.h>
#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/class_type.h>
#include <ATen/core/op_registration/infer_schema.h>
#include <ATen/core/stack.h>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/TypeList.h>
#include <c10/util/TypeTraits.h>
#include <torch/custom_class_detail.h>
#include <torch/library.h>
#include <iostream>
#include <sstream>
namespace torch {
/// This function is used in conjunction with `class_::def()` to register
/// a constructor for a given C++ class type. For example,
/// `torch::init<int, std::string>()` would register a two-argument constructor
/// taking an `int` and a `std::string` as argument.
template <class... Types>
detail::types<void, Types...> init() {
return detail::types<void, Types...>{};
}
template <typename Func, typename... ParameterTypeList>
struct InitLambda {
Func f;
};
template <typename Func>
decltype(auto) init(Func&& f) {
using InitTraits = c10::guts::infer_function_traits_t<std::decay_t<Func>>;
using ParameterTypeList = typename InitTraits::parameter_types;
InitLambda<Func, ParameterTypeList> init{std::forward<Func>(f)};
return init;
}
/// Entry point for custom C++ class registration. To register a C++ class
/// in PyTorch, instantiate `torch::class_` with the desired class as the
/// template parameter. Typically, this instantiation should be done in
/// the initialization of a global variable, so that the class will be
/// made available on dynamic library loading without any additional API
/// calls needed. For example, to register a class named Foo, you might
/// create a global variable like so:
///
/// static auto register_foo = torch::class_<Foo>("myclasses", "Foo")
/// .def("myMethod", &Foo::myMethod)
/// .def("lambdaMethod", [](const c10::intrusive_ptr<Foo>& self) {
/// // Do something with `self`
/// });
///
/// In addition to registering the class, this registration also chains
/// `def()` calls to register methods. `myMethod()` is registered with
/// a pointer to the Foo class's `myMethod()` method. `lambdaMethod()`
/// is registered with a C++ lambda expression.
template <class CurClass>
class class_ : public ::torch::detail::class_base {
static_assert(
std::is_base_of<CustomClassHolder, CurClass>::value,
"torch::class_<T> requires T to inherit from CustomClassHolder");
public:
/// This constructor actually registers the class type.
/// String argument `namespaceName` is an identifier for the
/// namespace you would like this class to appear in.
/// String argument `className` is the name you would like to
/// see this class exposed as in Python and TorchScript. For example, if
/// you pass `foo` as the namespace name and `Bar` as the className, the
/// class will appear as `torch.classes.foo.Bar` in Python and TorchScript
explicit class_(
const std::string& namespaceName,
const std::string& className,
std::string doc_string = "")
: class_base(
namespaceName,
className,
std::move(doc_string),
typeid(c10::intrusive_ptr<CurClass>),
typeid(c10::tagged_capsule<CurClass>)) {}
/// def() can be used in conjunction with `torch::init()` to register
/// a constructor for a given C++ class type. For example, passing
/// `torch::init<int, std::string>()` would register a two-argument
/// constructor taking an `int` and a `std::string` as argument.
template <typename... Types>
class_& def(
torch::detail::types<void, Types...>,
std::string doc_string = "",
std::initializer_list<arg> default_args =
{}) { // Used in combination with
// torch::init<...>()
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
auto classObj = c10::make_intrusive<CurClass>(args...);
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(std::move(classObj)));
};
defineMethod(
"__init__",
std::move(func),
std::move(doc_string),
std::move(default_args));
return *this;
}
// Used in combination with torch::init([]lambda(){......})
template <typename Func, typename... ParameterTypes>
class_& def(
InitLambda<Func, c10::guts::typelist::typelist<ParameterTypes...>> init,
std::string doc_string = "",
std::initializer_list<arg> default_args = {}) {
auto init_lambda_wrapper = [func = std::move(init.f)](
c10::tagged_capsule<CurClass> self,
ParameterTypes... arg) {
c10::intrusive_ptr<CurClass> classObj =
at::guts::invoke(func, std::forward<ParameterTypes>(arg)...);
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(classObj));
};
defineMethod(
"__init__",
std::move(init_lambda_wrapper),
std::move(doc_string),
std::move(default_args));
return *this;
}
/// This is the normal method registration API. `name` is the name that
/// the method will be made accessible by in Python and TorchScript.
/// `f` is a callable object that defines the method. Typically `f`
/// will either be a pointer to a method on `CurClass`, or a lambda
/// expression that takes a `c10::intrusive_ptr<CurClass>` as the first
/// argument (emulating a `this` argument in a C++ method.)
///
/// Examples:
///
/// // Exposes method `foo` on C++ class `Foo` as `call_foo()` in
/// // Python and TorchScript
/// .def("call_foo", &Foo::foo)
///
/// // Exposes the given lambda expression as method `call_lambda()`
/// // in Python and TorchScript.
/// .def("call_lambda", [](const c10::intrusive_ptr<Foo>& self) {
/// // do something
/// })
template <typename Func>
class_& def(
std::string name,
Func f,
std::string doc_string = "",
std::initializer_list<arg> default_args = {}) {
auto wrapped_f = detail::wrap_func<CurClass, Func>(std::move(f));
defineMethod(
std::move(name),
std::move(wrapped_f),
std::move(doc_string),
std::move(default_args));
return *this;
}
/// Method registration API for static methods.
template <typename Func>
class_& def_static(std::string name, Func func, std::string doc_string = "") {
auto qualMethodName = qualClassName + "." + name;
auto schema =
c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
auto wrapped_func =
[func = std::move(func)](jit::Stack& stack) mutable -> void {
using RetType =
typename c10::guts::infer_function_traits_t<Func>::return_type;
detail::BoxedProxy<RetType, Func>()(stack, func);
};
auto method = std::make_unique<jit::BuiltinOpFunction>(
std::move(qualMethodName),
std::move(schema),
std::move(wrapped_func),
std::move(doc_string));
classTypePtr->addStaticMethod(method.get());
registerCustomClassMethod(std::move(method));
return *this;
}
/// Property registration API for properties with both getter and setter
/// functions.
template <typename GetterFunc, typename SetterFunc>
class_& def_property(
const std::string& name,
GetterFunc getter_func,
SetterFunc setter_func,
std::string doc_string = "") {
torch::jit::Function* getter;
torch::jit::Function* setter;
auto wrapped_getter =
detail::wrap_func<CurClass, GetterFunc>(std::move(getter_func));
getter = defineMethod(name + "_getter", wrapped_getter, doc_string);
auto wrapped_setter =
detail::wrap_func<CurClass, SetterFunc>(std::move(setter_func));
setter = defineMethod(name + "_setter", wrapped_setter, doc_string);
classTypePtr->addProperty(name, getter, setter);
return *this;
}
/// Property registration API for properties with only getter function.
template <typename GetterFunc>
class_& def_property(
const std::string& name,
GetterFunc getter_func,
std::string doc_string = "") {
torch::jit::Function* getter;
auto wrapped_getter =
detail::wrap_func<CurClass, GetterFunc>(std::move(getter_func));
getter = defineMethod(name + "_getter", wrapped_getter, doc_string);
classTypePtr->addProperty(name, getter, nullptr);
return *this;
}
/// Property registration API for properties with read-write access.
template <typename T>
class_& def_readwrite(const std::string& name, T CurClass::*field) {
auto getter_func = [field =
field](const c10::intrusive_ptr<CurClass>& self) {
return self.get()->*field;
};
auto setter_func = [field = field](
const c10::intrusive_ptr<CurClass>& self, T value) {
self.get()->*field = value;
};
return def_property(name, getter_func, setter_func);
}
/// Property registration API for properties with read-only access.
template <typename T>
class_& def_readonly(const std::string& name, T CurClass::*field) {
auto getter_func =
[field = std::move(field)](const c10::intrusive_ptr<CurClass>& self) {
return self.get()->*field;
};
return def_property(name, getter_func);
}
/// This is an unsafe method registration API added for adding custom JIT
/// backend support via custom C++ classes. It is not for general purpose use.
class_& _def_unboxed(
std::string name,
std::function<void(jit::Stack&)> func,
c10::FunctionSchema schema,
std::string doc_string = "") {
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualClassName + "." + name,
std::move(schema),
std::move(func),
std::move(doc_string));
classTypePtr->addMethod(method.get());
registerCustomClassMethod(std::move(method));
return *this;
}
/// def_pickle() is used to define exactly what state gets serialized
/// or deserialized for a given instance of a custom C++ class in
/// Python or TorchScript. This protocol is equivalent to the Pickle
/// concept of `__getstate__` and `__setstate__` from Python
/// (https://docs.python.org/2/library/pickle.html#object.__getstate__)
///
/// Currently, both the `get_state` and `set_state` callables must be
/// C++ lambda expressions. They should have the following signatures,
/// where `CurClass` is the class you're registering and `T1` is some object
/// that encapsulates the state of the object.
///
/// __getstate__(intrusive_ptr<CurClass>) -> T1
/// __setstate__(T2) -> intrusive_ptr<CurClass>
///
/// `T1` must be an object that is convertable to IValue by the same rules
/// for custom op/method registration.
///
/// For the common case, T1 == T2. T1 can also be a subtype of T2. An
/// example where it makes sense for T1 and T2 to differ is if __setstate__
/// handles legacy formats in a backwards compatible way.
///
/// Example:
///
/// .def_pickle(
/// // __getstate__
/// [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
/// return self->stack_;
/// },
/// [](std::vector<std::string> state) { // __setstate__
/// return c10::make_intrusive<MyStackClass<std::string>>(
/// std::vector<std::string>{"i", "was", "deserialized"});
/// })
template <typename GetStateFn, typename SetStateFn>
class_& def_pickle(GetStateFn&& get_state, SetStateFn&& set_state) {
static_assert(
c10::guts::is_stateless_lambda<std::decay_t<GetStateFn>>::value &&
c10::guts::is_stateless_lambda<std::decay_t<SetStateFn>>::value,
"def_pickle() currently only supports lambdas as "
"__getstate__ and __setstate__ arguments.");
def("__getstate__", std::forward<GetStateFn>(get_state));
// __setstate__ needs to be registered with some custom handling:
// We need to wrap the invocation of of the user-provided function
// such that we take the return value (i.e. c10::intrusive_ptr<CurrClass>)
// and assign it to the `capsule` attribute.
using SetStateTraits =
c10::guts::infer_function_traits_t<std::decay_t<SetStateFn>>;
using SetStateArg = typename c10::guts::typelist::head_t<
typename SetStateTraits::parameter_types>;
auto setstate_wrapper = [set_state = std::move(set_state)](
c10::tagged_capsule<CurClass> self,
SetStateArg&& arg) {
c10::intrusive_ptr<CurClass> classObj =
at::guts::invoke(set_state, std::forward<SetStateArg>(arg));
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(classObj));
};
defineMethod(
"__setstate__",
detail::wrap_func<CurClass, decltype(setstate_wrapper)>(
std::move(setstate_wrapper)));
// type validation
auto getstate_schema = classTypePtr->getMethod("__getstate__").getSchema();
auto format_getstate_schema = [&getstate_schema]() {
std::stringstream ss;
ss << getstate_schema;
return ss.str();
};
TORCH_CHECK(
getstate_schema.arguments().size() == 1,
"__getstate__ should take exactly one argument: self. Got: ",
format_getstate_schema());
auto first_arg_type = getstate_schema.arguments().at(0).type();
TORCH_CHECK(
*first_arg_type == *classTypePtr,
"self argument of __getstate__ must be the custom class type. Got ",
first_arg_type->repr_str());
TORCH_CHECK(
getstate_schema.returns().size() == 1,
"__getstate__ should return exactly one value for serialization. Got: ",
format_getstate_schema());
auto ser_type = getstate_schema.returns().at(0).type();
auto setstate_schema = classTypePtr->getMethod("__setstate__").getSchema();
auto arg_type = setstate_schema.arguments().at(1).type();
TORCH_CHECK(
ser_type->isSubtypeOf(*arg_type),
"__getstate__'s return type should be a subtype of "
"input argument of __setstate__. Got ",
ser_type->repr_str(),
" but expected ",
arg_type->repr_str());
return *this;
}
private:
template <typename Func>
torch::jit::Function* defineMethod(
std::string name,
Func func,
std::string doc_string = "",
std::initializer_list<arg> default_args = {}) {
auto qualMethodName = qualClassName + "." + name;
auto schema =
c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
// If default values are provided for function arguments, there must be
// none (no default values) or default values for all function
// arguments, except for self. This is because argument names are not
// extracted by inferFunctionSchemaSingleReturn, and so there must be a
// torch::arg instance in default_args even for arguments that do not
// have an actual default value provided.
TORCH_CHECK(
default_args.size() == 0 ||
default_args.size() == schema.arguments().size() - 1,
"Default values must be specified for none or all arguments");
// If there are default args, copy the argument names and default values to
// the function schema.
if (default_args.size() > 0) {
schema = withNewArguments(schema, default_args);
}
auto wrapped_func =
[func = std::move(func)](jit::Stack& stack) mutable -> void {
// TODO: we need to figure out how to profile calls to custom functions
// like this! Currently can't do it because the profiler stuff is in
// libtorch and not ATen
using RetType =
typename c10::guts::infer_function_traits_t<Func>::return_type;
detail::BoxedProxy<RetType, Func>()(stack, func);
};
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualMethodName,
std::move(schema),
std::move(wrapped_func),
std::move(doc_string));
// Register the method here to keep the Method alive.
// ClassTypes do not hold ownership of their methods (normally it
// those are held by the CompilationUnit), so we need a proxy for
// that behavior here.
auto method_val = method.get();
classTypePtr->addMethod(method_val);
registerCustomClassMethod(std::move(method));
return method_val;
}
};
/// make_custom_class() is a convenient way to create an instance of a
/// registered custom class and wrap it in an IValue, for example when you want
/// to pass the object to TorchScript. Its syntax is equivalent to APIs like
/// `std::make_shared<>` or `c10::make_intrusive<>`.
///
/// For example, if you have a custom C++ class that can be constructed from an
/// `int` and `std::string`, you might use this API like so:
///
/// IValue custom_class_iv = torch::make_custom_class<MyClass>(3,
/// "foobarbaz");
template <typename CurClass, typename... CtorArgs>
c10::IValue make_custom_class(CtorArgs&&... args) {
auto userClassInstance =
c10::make_intrusive<CurClass>(std::forward<CtorArgs>(args)...);
return c10::IValue(std::move(userClassInstance));
}
// Alternative api for creating a torchbind class over torch::class_ this api is
// preffered to prevent size regressions on Edge usecases. Must be used in
// conjunction with TORCH_SELECTIVE_CLASS macro aka
// selective_class<foo>("foo_namespace", TORCH_SELECTIVE_CLASS("foo"))
template <class CurClass>
inline class_<CurClass> selective_class_(
const std::string& namespace_name,
detail::SelectiveStr<true> className) {
auto class_name = std::string(className.operator const char*());
return torch::class_<CurClass>(namespace_name, class_name);
}
template <class CurClass>
inline detail::ClassNotSelected selective_class_(
const std::string&,
detail::SelectiveStr<false>) {
return detail::ClassNotSelected();
}
// jit namespace for backward-compatibility
// We previously defined everything in torch::jit but moved it out to
// better reflect that these features are not limited only to TorchScript
namespace jit {
using ::torch::class_;
using ::torch::getCustomClass;
using ::torch::init;
using ::torch::isCustomClass;
} // namespace jit
template <class CurClass>
inline class_<CurClass> Library::class_(const std::string& className) {
TORCH_CHECK(
kind_ == DEF || kind_ == FRAGMENT,
"class_(\"",
className,
"\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
"(Error occurred at ",
file_,
":",
line_,
")");
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
return torch::class_<CurClass>(*ns_, className);
}
const std::unordered_set<std::string> getAllCustomClassesNames();
template <class CurClass>
inline class_<CurClass> Library::class_(detail::SelectiveStr<true> className) {
auto class_name = std::string(className.operator const char*());
TORCH_CHECK(
kind_ == DEF || kind_ == FRAGMENT,
"class_(\"",
class_name,
"\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
"(Error occurred at ",
file_,
":",
line_,
")");
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
return torch::class_<CurClass>(*ns_, class_name);
}
template <class CurClass>
inline detail::ClassNotSelected Library::class_(detail::SelectiveStr<false>) {
return detail::ClassNotSelected();
}
} // namespace torch