forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ops.py
249 lines (206 loc) · 9.8 KB
/
_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch._C
import contextlib
import ctypes
import sys
import types
import torch.jit
import torch._utils_internal
# Query `hasattr` only once.
_SET_GLOBAL_FLAGS = hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags')
@contextlib.contextmanager
def dl_open_guard():
"""
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
shared library to load custom operators.
"""
if _SET_GLOBAL_FLAGS:
old_flags = sys.getdlopenflags()
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
yield
if _SET_GLOBAL_FLAGS:
sys.setdlopenflags(old_flags)
# Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
# You can obtain an OpOverload object through attribute query on OpOverloadPacket.
class OpOverload:
def __init__(self, overloadpacket, op, schema):
self._op = op
self._schema = schema
self._overloadpacket = overloadpacket
# it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
def __deepcopy__(self, memo=None):
return self
def __str__(self):
return "OpOverload(op='{}.{}', overload='{}')".format(*self._schema.name.split("::"), self.overload_name)
def __call__(self, *args, **kwargs):
return self._op(*args, **kwargs or {})
def __getattr__(self, key):
return getattr(self._op, key)
# `my_namespace::my_op`
@property
def name(self):
return "{}.{}".format(*self._schema.name.split("::"))
@property
def overload_name(self):
return self._schema.overload_name
@property
def overload_packet(self):
return self._overloadpacket
@property
def op(self):
return self._op
# TODO: add more methods to expose information about input and output arguments
# OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
# You can obtain an OpOverload object through attribute query.
class OpOverloadPacket:
def __init__(self, qualified_op_name, op_name, op):
# These attributes are accessible on the object through the properties
# defined below but are immutable
self._qualified_op_name = qualified_op_name
self._op_name = op_name
self._op = op
# it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
def __deepcopy__(self, memo=None):
return self
def __str__(self):
return "OpOverloadPacket(op='{}.{}')".format(*self._qualified_op_name.split("::"))
@property
def qualified_op_name(self):
return "{}.{}".format(*self._qualified_op_name.split("::"))
@property
def op_name(self):
return self._op_name
@property
def op(self):
return self._op
def __getattr__(self, key):
# It is not a valid op_name when __file__ is passed in
if key == '__file__':
return 'torch.ops'
# ensure that query for dunder attributes that does not exist on
# opoverloadpacket but instead exists on the self._op object does not unnecessarily call
# `_get_operation_overload` (which is an expensive operation).
# This is done to prevent any potential slowdown. This list can be extended
# if there exists other attributes like `__name__` that only exist on self._op and not on the
# opoverloadpacket.
# This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
try:
if key.startswith('__'):
return getattr(self._op, key)
except AttributeError:
# for consistency because it seems weird to
# throw an attribute error with a message containing
# an object name different from the one the attribute
# query was performed on.
raise AttributeError("'{}' can't have an overload name beginning with '__' and the "
"underlying op {} has no attribute {} either."
.format(str(self), str(self._op), key)) from None
try:
# This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
use_key = '' if key == 'default' else key
# TODO: disallow access to overloads registered by JIT
op_ = torch._C._get_operation_overload(
self._qualified_op_name, use_key)
schema = torch._C._get_schema(self._qualified_op_name, use_key)
overload = OpOverload(self, op_, schema)
# cache the overload object
setattr(self, key, overload)
return overload
except RuntimeError:
raise AttributeError(
"The underlying op of '{}' has no overload name '{}'".format(str(self), key)
) from None
def __call__(self, *args, **kwargs):
# overloading __call__ to ensure torch.ops.foo.bar()
# is still callable from JIT
# We save the function ptr as the `op` attribute on
# OpOverloadPacket to access it here.
return self._op(*args, **kwargs or {})
# Resolution of torch.fn is different from torch.ops.aten.fn
# torch.fn uses the Python argparser, matches with the
# appropriate schema, and calls into the unboxed version of the method
# torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
# JIT creates a stack of all the overloads and then tries to match the
# correct one at runtime and always calls into the boxed version of the method
# Autograd codegen creates VariableType, TracerType,
# inplace or view type and python bindings.
# Aten codegen generates tensor methods for the the tensor class.
# _OpNamespace is a subclass of ModuleType because the torch script
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
# to work from script, we need to ensure ops and foo are modules
class _OpNamespace(types.ModuleType):
"""
An op namespace to dynamically bind Operators into Python.
Say a user has created a custom Operator called "my_namespace::my_op". To
call this op, the user will write torch.ops.my_namespace.my_op(...).
At startup, this operation will not yet be bound into Python. Instead, the
following sequence of magic tricks will occur:
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
on the `torch.ops` object, which will create a new `_OpNamespace`
object called `my_namespace` and set it as an attribute on the `ops`
object.
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
the `my_namespace` object, which will retrieve the operation via
`torch.get_operation`, a function bound from C++, and then in a similar
fashion bind this new object onto the `my_namespace` object.
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
and subsequent accesses will incur no further lookup (the namespace and
operation will already exist).
"""
def __init__(self, name):
super(_OpNamespace, self).__init__('torch.ops.' + name)
self.name = name
def __getattr__(self, op_name):
# It is not a valid op_name when __file__ is passed in
if op_name == '__file__':
return 'torch.ops'
# Get the op `my_namespace::my_op` if available. This will also check
# for overloads and raise an exception if there are more than one.
namespace_name = self.name
qualified_op_name = '{}::{}'.format(namespace_name, op_name)
op = torch._C._jit_get_operation(qualified_op_name)
# let the script frontend know that op is identical to the builtin op
# with qualified_op_name
torch.jit._builtins._register_builtin(op, qualified_op_name)
op.__module__ = self.__module__ + "." + namespace_name
opoverloadpacket = OpOverloadPacket(qualified_op_name, op_name, op)
opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
# cache the opoverloadpacket to ensure that each op corresponds to
# a unique OpOverloadPacket object
setattr(self, op_name, opoverloadpacket)
return opoverloadpacket
class _Ops(types.ModuleType):
__file__ = '_ops.py'
def __init__(self):
super(_Ops, self).__init__('torch.ops')
self.loaded_libraries = set()
def __getattr__(self, name):
# Here we are creating `torch.ops.my_namespace`
namespace = _OpNamespace(name)
setattr(self, name, namespace)
return namespace
def load_library(self, path):
"""
Loads a shared library from the given path into the current process.
The library being loaded may run global initialization code to register
custom operators with the PyTorch JIT runtime. This allows dynamically
loading custom operators. For this, you should compile your operator
and the static registration code into a shared library object, and then
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
shared object.
After the library is loaded, it is added to the
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
for the paths of all libraries loaded using this function.
Args:
path (str): A path to a shared library to load.
"""
if sys.executable == "torch_deploy":
return
path = torch._utils_internal.resolve_library_path(path)
with dl_open_guard():
# Import the shared library into the process, thus running its
# static (global) initialization code in order to register custom
# operators with the JIT.
ctypes.CDLL(path)
self.loaded_libraries.add(path)
# The ops "namespace"
ops = _Ops()