forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlengths_reducer_fused_8bit_rowwise_ops_test.py
202 lines (174 loc) · 7.4 KB
/
lengths_reducer_fused_8bit_rowwise_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, workspace
from hypothesis import given
def compare_rowwise(emb_orig, emb_reconstructed, fp16):
# there is an absolute error introduced per row through int8 quantization
# and a relative error introduced when quantizing back from fp32 to fp16
assert emb_orig.shape == emb_reconstructed.shape
rtol = 1e-8
if fp16:
rtol = 1e-3
erange = np.amax(emb_orig, axis=1) - np.amin(emb_orig, axis=1)
threshold = erange / 255.0 / 1.9
for i in range(emb_orig.shape[0]):
r_orig = emb_orig[i, :]
r_reconstructed = emb_reconstructed[i, :]
isclose = np.isclose(r_orig, r_reconstructed, atol=threshold[i], rtol=rtol)
n_violated = isclose.size - isclose.sum()
if n_violated > 0:
print(isclose, threshold[i])
print(i, r_orig, r_reconstructed, threshold[i], r_orig - r_reconstructed)
assert n_violated == 0
class TestLengthsReducerOpsFused8BitRowwise(hu.HypothesisTestCase):
@given(
num_rows=st.integers(1, 20),
blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]),
weighted=st.booleans(),
seed=st.integers(0, 2 ** 32 - 1),
empty_indices=st.booleans(),
fp16=st.booleans(),
)
def test_sparse_lengths_sum(
self, num_rows, blocksize, weighted, seed, empty_indices, fp16
):
net = core.Net("bench")
np.random.seed(seed)
if fp16:
input_data = np.random.rand(num_rows, blocksize).astype(np.float16)
else:
input_data = np.random.rand(num_rows, blocksize).astype(np.float32)
if empty_indices:
lengths = np.zeros(num_rows, dtype=np.int32)
num_indices = 0
else:
num_indices = np.random.randint(len(input_data))
# the number of indices per sample
lengths_split = np.clip(num_indices // 2, 1, 10)
lengths = (
np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split
)
# readjust num_indices when lengths_split doesn't divide num_indices
num_indices = num_indices // lengths_split * lengths_split
indices = np.random.randint(
low=0, high=len(input_data), size=[num_indices], dtype=np.int32
)
weights = np.random.uniform(size=[len(indices)]).astype(np.float32)
if fp16:
quantized_data = net.HalfFloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToHalfFloat(
quantized_data, "dequantized_data"
)
else:
quantized_data = net.FloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToFloat(
quantized_data, "dequantized_data"
)
if weighted:
net.SparseLengthsWeightedSum(
[dequantized_data, "weights", "indices", "lengths"], "sum_reference"
)
net.SparseLengthsWeightedSumFused8BitRowwise(
[quantized_data, "weights", "indices", "lengths"], "sum_quantized"
)
else:
net.SparseLengthsSum(
[dequantized_data, "indices", "lengths"], "sum_reference"
)
net.SparseLengthsSumFused8BitRowwise(
[quantized_data, "indices", "lengths"], "sum_quantized"
)
workspace.FeedBlob("input_data", input_data)
workspace.FeedBlob("weights", weights)
workspace.FeedBlob("indices", indices)
workspace.FeedBlob("lengths", lengths)
workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"])
workspace.CreateNet(net)
workspace.RunNetOnce(net)
dequantized_data = workspace.FetchBlob("dequantized_data")
np.testing.assert_array_almost_equal(
input_data, workspace.FetchBlob("input_data")
)
compare_rowwise(input_data, dequantized_data, fp16)
sum_reference = workspace.FetchBlob("sum_reference")
sum_quantized = workspace.FetchBlob("sum_quantized")
if fp16:
np.testing.assert_array_almost_equal(
sum_reference, sum_quantized, decimal=3
)
else:
np.testing.assert_array_almost_equal(sum_reference, sum_quantized)
@given(
num_rows=st.integers(1, 20),
blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]),
seed=st.integers(0, 2 ** 32 - 1),
empty_indices=st.booleans(),
fp16=st.booleans(),
)
def test_sparse_lengths_mean(self, num_rows, blocksize, seed, empty_indices, fp16):
net = core.Net("bench")
np.random.seed(seed)
if fp16:
input_data = np.random.rand(num_rows, blocksize).astype(np.float16)
else:
input_data = np.random.rand(num_rows, blocksize).astype(np.float32)
if empty_indices:
lengths = np.zeros(num_rows, dtype=np.int32)
num_indices = 0
else:
num_indices = np.random.randint(len(input_data))
# the number of indices per sample
lengths_split = np.clip(num_indices // 2, 1, 10)
lengths = (
np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split
)
# readjust num_indices when lengths_split doesn't divide num_indices
num_indices = num_indices // lengths_split * lengths_split
indices = np.random.randint(
low=0, high=len(input_data), size=[num_indices], dtype=np.int32
)
print(indices, lengths)
if fp16:
quantized_data = net.HalfFloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToHalfFloat(
quantized_data, "dequantized_data"
)
else:
quantized_data = net.FloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToFloat(
quantized_data, "dequantized_data"
)
net.SparseLengthsMean(
[dequantized_data, "indices", "lengths"], "mean_reference"
)
net.SparseLengthsMeanFused8BitRowwise(
[quantized_data, "indices", "lengths"], "mean_quantized"
)
workspace.FeedBlob("input_data", input_data)
workspace.FeedBlob("indices", indices)
workspace.FeedBlob("lengths", lengths)
workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"])
workspace.CreateNet(net)
workspace.RunNetOnce(net)
dequantized_data = workspace.FetchBlob("dequantized_data")
np.testing.assert_array_almost_equal(
input_data, workspace.FetchBlob("input_data")
)
compare_rowwise(input_data, dequantized_data, fp16)
mean_reference = workspace.FetchBlob("mean_reference")
mean_quantized = workspace.FetchBlob("mean_quantized")
if fp16:
np.testing.assert_array_almost_equal(
mean_reference, mean_quantized, decimal=3
)
else:
np.testing.assert_array_almost_equal(mean_reference, mean_quantized)