forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer_model_helper.py
753 lines (642 loc) · 28.7 KB
/
layer_model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
# @package layer_model_helper
# Module caffe2.python.layer_model_helper
from caffe2.python import core, model_helper, schema, scope, utils, muji
from caffe2.python.modeling.parameter_info import (
ParameterInfo,
)
from caffe2.python.modeling.parameter_sharing import (
parameter_sharing_context,
)
from caffe2.python.modeling.net_modifier import NetModifier
from caffe2.python.optimizer import get_param_device, Optimizer
from caffe2.python.regularizer import Regularizer, RegularizationBy
from caffe2.python.layers import layers
from future.utils import viewitems, viewvalues
import logging
import numpy as np
import copy
logger = logging.getLogger(__name__)
class LayerModelHelper(model_helper.ModelHelper):
"""
Model helper for building models on top of layers abstractions.
Each layer is the abstraction that is higher level than Operator. Layer
is responsible for ownership of it's own parameters and can easily be
instantiated in multiple nets possible with different sets of ops.
As an example: one can easily instantiate predict and train nets from
the same set of layers, where predict net will have subset of the
operators from train net.
"""
def __init__(self, name, input_feature_schema, trainer_extra_schema,
keep_blobs=False,
use_attribution=True):
''' TODO(amalevich): more documnetation on input args
use_attribution:
if True, will generate the atrribution net for feature importance
calculation; Need to turn it to false when FC is quantized as FP16
This attribute access will be consistent with MTML model.
'''
super(LayerModelHelper, self).__init__(name=name)
self._layer_names = set()
self._layers = []
self._param_to_shape = {}
# seed default
self._seed = None
self._sequence_seed = True
# optimizer bookkeeping
self.param_to_optim = {}
self.param_to_reg = {}
self._default_optimizer = None
self._loss = None
self._prediction = []
self._output_schema = None
self._post_grad_net_modifiers = []
self._final_net_modifiers = []
# breakdown map; breakdown features are categorical (like dense) but not
# necessarily used to represent data for training
self._breakdown_map = None
# Connect Schema to self.net. That particular instance of schmea will be
# use for generation of the Layers across the network and would be used
# for connection with Readers.
self._input_feature_schema = schema.NewRecord(
self.net,
input_feature_schema
) if not keep_blobs else input_feature_schema.clone()
self._trainer_extra_schema = schema.NewRecord(
self.net,
trainer_extra_schema
) if not keep_blobs else trainer_extra_schema.clone()
self._metrics_schema = schema.Struct()
self._preproc_output_schema = None
self._init_global_constants()
self.param_init_net = self.create_init_net('param_init_net')
self._initialize_params = True
self._transfer_learning_blob_name_mappings = None
# additional (hard-coded) diagnose_options to report based on the model
# TODO(xlwang): it's hack!
self.ad_hoc_diagnose_blobs_and_operations = []
self.ad_hoc_plot_blobs = []
self.use_attribution = use_attribution
def clear_output_schema(self):
self._output_schema = None
def set_initialize_params(self, initialize_params):
self._initialize_params = initialize_params
def add_metric_field(self, name, value):
assert name not in self._metrics_schema.fields, (
"Try to add metric field twice: {}".format(name))
self._metrics_schema = self._metrics_schema + schema.Struct(
(name, value)
)
# an empty white_set will skip everything
def filter_metrics_schema(self, white_set):
logger.info("Filter metric schema with white_set {}".format(white_set))
field_names = self._metrics_schema.field_names()
for name in field_names:
if name not in white_set:
self._metrics_schema = self._metrics_schema - schema.Struct((name, schema.Scalar()))
def add_ad_hoc_plot_blob(self, blob, dtype=None):
assert isinstance(
blob, (str, core.BlobReference)
), "expect type str or BlobReference, but got {}".format(type(blob))
dtype = dtype or (np.float, (1, ))
self.add_metric_field(str(blob), schema.Scalar(dtype, blob))
self.ad_hoc_plot_blobs.append(blob)
@staticmethod
def _get_global_constant_initializer_op(
blob_name, array=None, dtype=None, initializer=None
):
# to add a global constant to model, one first need to get the
# initializer
if array is not None:
assert initializer is None,\
"Only one from array and initializer should be specified"
if dtype is None:
array = np.array(array)
else:
array = np.array(array, dtype=dtype)
# TODO: make GivenTensor generic
op_name = None
if array.dtype == np.int32:
op_name = 'GivenTensorIntFill'
elif array.dtype == np.int64:
op_name = 'GivenTensorInt64Fill'
elif array.dtype == np.str:
op_name = 'GivenTensorStringFill'
elif array.dtype == np.bool:
op_name = 'GivenTensorBoolFill'
else:
op_name = 'GivenTensorFill'
def initializer(blob_name):
return core.CreateOperator(
op_name, [],
blob_name,
shape=array.shape,
values=array.flatten().tolist()
)
else:
assert initializer is not None
initializer_op = initializer(blob_name)
return initializer_op
def add_global_constant(
self, name, array=None, dtype=None, initializer=None
):
assert isinstance(name, str), (
'name should be a string as we are using it as map key')
# This is global namescope for constants. They will be created in all
# init_nets and there should be very few of them.
assert name not in self.global_constants, \
"%s already added in global_constants" % name
blob_name = self.net.NextBlob(name)
self.global_constants[name] = blob_name
initializer_op = LayerModelHelper._get_global_constant_initializer_op(
blob_name, array, dtype, initializer
)
assert blob_name not in self.global_constant_initializers, \
"there is already a initializer op associated with blob %s" % \
blob_name
self.global_constant_initializers[blob_name] = initializer_op
return blob_name
def maybe_add_global_constant(self, name, *args, **kwargs):
# To ad hoc add new global constants without duplication
# if the name was already registered in global_constants, it will not be
# added even if the intended value is different from its original value
if name in self.global_constants:
blob_name = self.global_constants[name]
initializer_op = \
LayerModelHelper._get_global_constant_initializer_op(
blob_name, *args, **kwargs
)
# check if the original initializer is the same as the one intended
# now
assert utils.OpAlmostEqual(
initializer_op,
self.global_constant_initializers[blob_name],
'debug_info'
), \
"conflict initializers for global constant %s, " \
"previous %s, now %s" % (
blob_name, str(initializer_op),
str(self.global_constant_initializers[blob_name]))
return blob_name
return self.add_global_constant(name, *args, **kwargs)
def _init_global_constants(self):
self.global_constants = {}
self.global_constant_initializers = {}
self.add_global_constant('ONE', 1.0)
self.add_global_constant('NAN', float("NaN"))
self.add_global_constant('ZERO', 0.0)
self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32')
def _add_global_constants(self, init_net):
for initializer_op in viewvalues(self.global_constant_initializers):
init_net._net.op.extend([initializer_op])
def create_init_net(self, name):
init_net = core.Net(name)
self._add_global_constants(init_net)
return init_net
def _validate_param_shape(self, param_name, shape):
if param_name not in self._param_to_shape:
return
ref_shape = self._param_to_shape[param_name]
if shape != ref_shape:
raise ValueError(
"Got inconsistent shapes between shared parameters "
"when trying to map a blob in scope {0} to {1}. ref_shape : "
" {2}, shape : {3}".format(
scope.CurrentNameScope(), param_name, ref_shape, shape)
)
def _validate_param_optim(self, param_name, optim):
# there are three possible values for optim:
# 1) None (which will use self._default_optimizer after this layer is instantiated)
# 2) self.NoOptim
# 3) an instance of Optimizer class such as AdagradOptimizer
# this implies this parameter is not shared with any other parameter so far
if param_name not in self.param_to_optim:
return
logger.info("{} shares the same parameter with another parameter. "
"Validating if the same optimizer has been specified for them.".format(
param_name,
))
ref_optim = self.param_to_optim[param_name]
if optim is None:
assert ref_optim == self._default_optimizer, (
"Optim for {} is None which will fall back to use default_optimizer. "
"However, the optimizer that has been specified for this shared parameter "
"is {} which is different from default_optimizer {}. "
"Please check the optimizers specified for parameters shared "
"with {} and the default_optimizer to ensure the consistency.".format(
param_name, ref_optim, self._default_optimizer, param_name
)
)
elif optim == self.NoOptim:
assert ref_optim == self.NoOptim, (
"Optim for {} is NoOptim. However, the optimizer for the parameters "
"shared with {} is {} which is different from NoOptim. "
"Please check the optimizer specified for other parameters in the "
"shared group to ensure consistency.".format(
param_name, param_name, ref_optim
)
)
elif isinstance(optim, Optimizer):
assert isinstance(ref_optim, Optimizer), (
"Optim for {} is an instance of Optimizer. However, the optimizer "
"for the parameters shared with {} is {} which is not an instance "
"of Optimizer. Please check the optimizer specified for other "
" parameters in the shared group to ensure consistency.".format(
param_name, param_name, ref_optim, optim
)
)
assert type(optim) is type(ref_optim) and optim.attributes == ref_optim.attributes, (
"Optim for {} is an instance of Optimizer. However, the optimizer "
"for the parameters shared with {} is {}. "
"This optimizer either doesn't have the same type as the current optimizer: "
"{} vs {}, or its attributes such as learning rate are different from "
"that of current optimizer which is {} vs {}. "
"Please check the optimizer specified for other parameters in the "
"shared group to ensure consistency.".format(
param_name, param_name, ref_optim, type(optim), type(ref_optim), optim.attributes, ref_optim.attributes
)
)
else:
raise ValueError("optim should be either None, NoOptim, or an instance of Optimizer, Got {} ".format(optim))
def create_param(self, param_name, shape, initializer, optimizer=None,
ps_param=None, regularizer=None):
if isinstance(param_name, core.BlobReference):
param_name = str(param_name)
elif isinstance(param_name, str):
# Parameter name will be equal to current Namescope that got
# resolved with the respect of parameter sharing of the scopes.
param_name = parameter_sharing_context.get_parameter_name(
param_name)
else:
raise ValueError("Unsupported type for param_name")
param_blob = core.BlobReference(param_name)
if len(initializer) == 1:
init_op_args = {}
else:
assert len(initializer) == 2
init_op_args = copy.deepcopy(initializer[1])
if shape is not None:
assert 'shape' not in init_op_args
init_op_args.update({'shape': shape})
initializer_op = None
if self._initialize_params:
initializer_op = core.CreateOperator(
initializer[0],
[],
param_blob,
**init_op_args
)
param = layers.LayerParameter(
parameter=param_blob,
initializer=initializer_op,
optimizer=optimizer,
ps_param=ps_param,
regularizer=regularizer
)
self._validate_param_shape(param_name, shape)
self._validate_param_optim(param_name, optimizer)
self._param_to_shape[param_name] = shape
return param
def next_layer_name(self, prefix):
base_name = core.ScopedName(prefix)
name = base_name
index = 0
while name in self._layer_names:
name = base_name + '_auto_' + str(index)
index += 1
self._layer_names.add(name)
return name
def add_layer(self, layer):
self._layers.append(layer)
for param in layer.get_parameters():
assert isinstance(param.parameter, core.BlobReference)
self.param_to_optim[str(param.parameter)] = \
param.optimizer or self.default_optimizer
self.params.append(param.parameter)
if isinstance(param, layers.LayerParameter):
logger.info("Add parameter regularizer {0}".format(param.parameter))
self.param_to_reg[param.parameter] = param.regularizer
elif isinstance(param, ParameterInfo):
# TODO:
# Currently, LSTM and RNNcells, which use ModelHelper instead of
# LayerModelHelper as super class, are called in pooling_methods
# In ModelHelper, regularization is not supported in create_param
# We will unify the way of create_param of ModelHelper and
# LayerModelHelper in the future.
logger.info('regularization is unsupported for ParameterInfo object')
else:
raise ValueError(
'unknown object type besides ParameterInfo and LayerParameter: {}'
.format(param)
)
# The primary value of adding everything to self.net - generation of the
# operators right away, i.e. if error happens it'll be detected
# immediately. Other than this - create_x_net should be called.
layer.add_operators(self.net, self.param_init_net)
return layer.output_schema
def get_parameter_blobs(self):
param_blobs = []
for layer in self._layers:
for param in layer.get_parameters():
param_blobs.append(param.parameter)
return param_blobs
def add_post_grad_net_modifiers(self, modifier):
assert modifier not in self._post_grad_net_modifiers,\
"{0} is already in {1}".format(modifier, self._post_grad_net_modifiers)
assert isinstance(modifier, NetModifier),\
"{} has to be a NetModifier instance".format(modifier)
self._post_grad_net_modifiers.append(modifier)
def add_final_net_modifiers(self, modifier):
assert modifier not in self._final_net_modifiers,\
"{0} is already in {1}".format(modifier, self._final_net_modifiers)
assert isinstance(modifier, NetModifier),\
"{} has to be a NetModifier instance".format(modifier)
self._final_net_modifiers.append(modifier)
@property
def seed(self):
return self._seed
@property
def sequence_seed(self):
return self._sequence_seed
def store_seed(self, seed, sequence_seed=True):
# Store seed config that will be applied to each op in the net.
self._seed = seed
# If sequence_seed is True, the i-th op has rand_seed=`seed + i`
self._sequence_seed = sequence_seed
def apply_seed(self, net):
if self._seed:
net.set_rand_seed(self._seed, self._sequence_seed)
@property
def default_optimizer(self):
return self._default_optimizer
@default_optimizer.setter
def default_optimizer(self, optimizer):
self._default_optimizer = optimizer
@property
def input_feature_schema(self):
return self._input_feature_schema
@property
def trainer_extra_schema(self):
return self._trainer_extra_schema
@property
def metrics_schema(self):
"""
Returns the schema that represents model output that should be used for
metric reporting.
During the training/evaluation this schema will be appended to the
schema that represents model output.
"""
return self._metrics_schema
@property
def output_schema(self):
assert self._output_schema is not None
return self._output_schema
@output_schema.setter
def output_schema(self, schema):
assert self._output_schema is None
self._output_schema = schema
@property
def preproc_output_schema(self):
assert self._preproc_output_schema is not None
return self._preproc_output_schema
@preproc_output_schema.setter
def preproc_output_schema(self, schema):
assert self._preproc_output_schema is None
self._preproc_output_schema = schema
@property
def prediction(self):
assert self._prediction, "model prediction is empty"
return self._prediction
def add_prediction(self, prediction, weight=1.0):
assert prediction is not None, "Added prediction should not be None"
self._prediction.append((prediction, weight))
@property
def transfer_learning_blob_name_mappings(self):
return self._transfer_learning_blob_name_mappings
@transfer_learning_blob_name_mappings.setter
def transfer_learning_blob_name_mappings(self, blob_name_mappings):
assert blob_name_mappings is not None, "Transfer learning blob name mappings should not be None"
self._transfer_learning_blob_name_mappings = blob_name_mappings
@property
def loss(self):
assert self._loss is not None
return self._loss
@loss.setter
def loss(self, loss):
assert self._loss is None
self._loss = loss
def has_loss(self):
return self._loss is not None
def add_loss(self, loss, name='unnamed'):
assert loss is not None, "Added loss should not be None"
assert isinstance(loss, schema.Scalar) or isinstance(
loss, schema.Struct
), "Added loss should be a scalar or a struct"
if self._loss is None:
self._loss = schema.Struct((name, loss))
else:
# loss could've been set through model.loss directly which could be
# a scalar
if isinstance(self._loss, schema.Scalar):
self._loss = schema.Struct(('unnamed', self._loss))
prefix_base = name + '_auto_'
index = 0
prefix = name
while prefix in self._loss:
prefix = prefix_base + str(index)
index += 1
loss_struct = schema.Struct((prefix, loss))
self._loss = self._loss + loss_struct
def add_output_schema(self, name, value):
assert value is not None, \
'Added output schema {} should not be None'.format(name)
assert isinstance(value, schema.Scalar) or \
isinstance(value, schema.Struct), \
'Added output schema {} should be a scalar or a struct.\n\
Now it is {}.'.format(name, type(value))
if self._output_schema is None: # be the first field
self._output_schema = schema.Struct((name, value))
else: # merge with other fields
assert name not in self._output_schema.fields, \
'Output Schema Field {} already exists'.format(name)
self._output_schema = \
self._output_schema + schema.Struct((name, value))
def add_trainer_extra_schema(self, trainer_extra_schema):
trainer_extra_record = schema.NewRecord(self.net, trainer_extra_schema)
self._trainer_extra_schema += trainer_extra_record
def __getattr__(self, layer):
def is_functional_layer(layer):
if core.IsOperator(layer):
return True
elif layer.startswith('FunctionalLayer'):
return True
else:
return False
def resolve_functional_layer(layer):
if core.IsOperator(layer):
return layer
elif layer.startswith('FunctionalLayer'):
return layer[len('FunctionalLayer'):]
else:
raise ValueError(
'%s cannot be resolved as functional layer' % layer
)
if layer.startswith('__'):
raise AttributeError(layer)
# TODO(amalevich): Add add support for ifbpy inline documentation
if layers.layer_exists(layer):
def wrapper(*args, **kwargs):
new_layer = layers.create_layer(layer, self, *args, **kwargs)
if kwargs.get("output_to_metrics", False):
new_layer.export_output_for_metrics()
if kwargs.get("params_to_metrics", False):
new_layer.export_params_for_metrics()
return self.add_layer(new_layer)
return wrapper
elif is_functional_layer(layer):
# TODO(xlwang): Desginated layer shadows the usage of an op as a
# single layer. To enforce using an op (e.g. Split) as functional
# layer, one can call 'model.FunctionalLayerSplit'
layer = resolve_functional_layer(layer)
def wrapper(*args, **kwargs):
def apply_operator(net, in_record, out_record, **kwargs):
# TODO(amalevich): Switch to net.operator as soon as it gets
# landed
net.__getattr__(layer)(in_record.field_blobs(),
out_record.field_blobs(),
**kwargs)
if 'name' not in kwargs:
kwargs['name'] = layer
new_layer = layers.create_layer(
'Functional',
self, *args, function=apply_operator,
**kwargs
)
if kwargs.get("output_to_metrics", False):
new_layer.export_output_for_metrics()
if kwargs.get("params_to_metrics", False):
new_layer.export_params_for_metrics()
return self.add_layer(new_layer)
return wrapper
else:
# this needs to be an AttributeError to fit hasattr semantics
raise AttributeError(
"Trying to create non-registered layer: {}".format(layer))
@property
def layers(self):
return self._layers
def apply_regularizers_on_loss(
self,
train_net,
train_init_net,
blob_to_device=None,
):
logger.info("apply regularizer on loss")
for param, regularizer in viewitems(self.param_to_reg):
if regularizer is None:
continue
logger.info("add regularizer {0} for param {1} to loss".format(regularizer, param))
assert isinstance(regularizer, Regularizer)
added_loss_blob = regularizer(train_net, train_init_net, param, grad=None,
by=RegularizationBy.ON_LOSS)
logger.info(added_loss_blob)
if added_loss_blob is not None:
self.add_loss(
schema.Scalar(blob=added_loss_blob),
str(added_loss_blob)
)
def apply_regularizers_after_optimizer(
self,
train_net,
train_init_net,
grad_map,
blob_to_device=None,
):
logger.info("apply regularizer after optimizer")
CPU = muji.OnCPU()
# if given, blob_to_device is a map from blob to device_option
blob_to_device = blob_to_device or {}
for param, regularizer in viewitems(self.param_to_reg):
if regularizer is None:
continue
assert isinstance(regularizer, Regularizer)
logger.info("add regularizer {0} for param {1} to optimizer".format(regularizer, param))
device = get_param_device(
param,
grad_map.get(str(param)),
param_to_device=blob_to_device,
default_device=CPU,
)
with core.DeviceScope(device):
regularizer(
train_net, train_init_net, param, grad=grad_map.get(str(param)),
by=RegularizationBy.AFTER_OPTIMIZER
)
def apply_post_grad_net_modifiers(
self,
trainer_net,
trainer_init_net,
grad_map,
blob_to_device=None,
modify_output_record=False,
):
param_grad_map = {param: grad_map[param]
for param in self.param_to_optim.keys() if param in grad_map}
for modifier in self._post_grad_net_modifiers:
modifier(trainer_net, trainer_init_net, param_grad_map,
blob_to_device=blob_to_device,
modify_output_record=modify_output_record)
def apply_final_net_modifiers(
self,
trainer_net,
trainer_init_net,
grad_map,
blob_to_device=None,
modify_output_record=False,
):
for modifier in self._final_net_modifiers:
modifier(trainer_net, trainer_init_net, grad_map,
blob_to_device=blob_to_device,
modify_output_record=modify_output_record)
def apply_optimizers(
self,
train_net,
train_init_net,
grad_map,
blob_to_device=None,
):
CPU = muji.OnCPU()
# if given, blob_to_device is a map from blob to device_option
blob_to_device = blob_to_device or {}
for param, optimizer in viewitems(self.param_to_optim):
assert optimizer is not None, \
"default optimizer must have been set in add_layer"
# note that not all params has gradient and thus we sent None if
# gradient does not exists
device = get_param_device(
param,
grad_map.get(str(param)),
param_to_device=blob_to_device,
default_device=CPU,
)
if device is not None:
# extra info is not applicable for optimizers
del device.extra_info[:]
with core.DeviceScope(device):
optimizer(
train_net, train_init_net, param, grad_map.get(str(param)))
def _GetOne(self):
return self.global_constants['ONE']
# An optimizer which allows us to do NO optimization
def NoOptim(self, *args, **kwargs):
pass
@property
def breakdown_map(self):
return self._breakdown_map
@breakdown_map.setter
def breakdown_map(self, breakdown_map):
# TODO(xlwang): provide more rich feature information in breakdown_map;
# and change the assertion accordingly
assert isinstance(breakdown_map, dict)
assert all(isinstance(k, str) for k in breakdown_map)
assert sorted(breakdown_map.values()) == list(range(len(breakdown_map)))
self._breakdown_map = breakdown_map