forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_import_c_extension.py
57 lines (48 loc) · 2.2 KB
/
_import_c_extension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
## @package _import_c_extension
# Module caffe2.python._import_c_extension
import atexit
import logging
import sys
from caffe2.python import extension_loader
# We will first try to load the gpu-enabled caffe2. If it fails, we will then
# attempt to load the cpu version. The cpu backend is the minimum required, so
# if that still fails, we will exit loud.
with extension_loader.DlopenGuard():
has_hip_support = False
has_cuda_support = False
has_gpu_support = False
try:
from caffe2.python.caffe2_pybind11_state_gpu import * # noqa
if num_cuda_devices(): # noqa
has_gpu_support = has_cuda_support = True
except ImportError as gpu_e:
logging.info('Failed to import cuda module: {}'.format(gpu_e))
try:
from caffe2.python.caffe2_pybind11_state_hip import * # noqa
# we stop checking whether we have AMD GPU devices on the host,
# because we may be constructing a net on a machine without GPU,
# and run the net on another one with GPU
has_gpu_support = has_hip_support = True
logging.info('This caffe2 python run has AMD GPU support!')
except ImportError as hip_e:
logging.info('Failed to import AMD hip module: {}'.format(hip_e))
logging.warning(
'This caffe2 python run failed to load cuda module:{},'
'and AMD hip module:{}.'
'Will run in CPU only mode.'.format(gpu_e, hip_e))
try:
from caffe2.python.caffe2_pybind11_state import * # noqa
except ImportError as cpu_e:
logging.critical(
'Cannot load caffe2.python. Error: {0}'.format(str(cpu_e)))
sys.exit(1)
# libcaffe2_python contains a global Workspace that we need to properly delete
# when exiting. Otherwise, cudart will cause segfaults sometimes.
atexit.register(on_module_exit) # noqa
# Add functionalities for the TensorCPU interface.
def _TensorCPU_shape(self):
return tuple(self._shape)
def _TensorCPU_reshape(self, shape):
return self._reshape(list(shape))
TensorCPU.shape = property(_TensorCPU_shape) # noqa
TensorCPU.reshape = _TensorCPU_reshape # noqa