forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaptiveMaxPooling2d.cpp
86 lines (70 loc) · 3.07 KB
/
AdaptiveMaxPooling2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/AdaptivePooling.h>
#include <c10/util/irange.h>
namespace at {
namespace meta {
TORCH_META_FUNC(adaptive_max_pool2d) (const Tensor& input, IntArrayRef output_size) {
int ndim = input.ndimension();
TORCH_CHECK(ndim == 3 || ndim == 4,
"adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: ",
input.sizes());
for (const auto i : c10::irange(1, ndim)) {
TORCH_CHECK(input.size(i) > 0,
"adaptive_max_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
"but input has sizes ", input.sizes(), " with dimension ", i,
" being empty");
}
TORCH_CHECK(output_size.size() == 2,
"adaptive_max_pool2d(): internal error: output_size.size() must be 2");
int dimH = 1;
int64_t sizeB = 1;
int64_t sizeD = 0;
if (input.ndimension() == 4) {
sizeB = input.size(0);
dimH++;
}
sizeD = input.size(dimH - 1);
int64_t osizeH = output_size[0];
int64_t osizeW = output_size[1];
/* resize output */
if (input.ndimension() == 3) {
set_output(0, {sizeD, osizeH, osizeW}, input.options());
/* indices will contain i,j locations for each output point */
set_output(1, {sizeD, osizeH, osizeW}, input.options().dtype(kLong));
} else {
set_output(0, {sizeB, sizeD, osizeH, osizeW}, input.options().memory_format(input.suggest_memory_format()));
/* indices will contain i,j locations for each output point */
set_output(1, {sizeB, sizeD, osizeH, osizeW}, input.options().memory_format(input.suggest_memory_format()).dtype(kLong));
}
}
TORCH_META_FUNC(adaptive_max_pool2d_backward)
(const Tensor& grad_output, const Tensor& input, const Tensor& indices) {
int64_t ndim = grad_output.ndimension();
TORCH_CHECK(ndim == 3 || ndim == 4,
"adaptive_max_pooling2d_backward(): Expected 3D or 4D grad_output, but got: ", grad_output.sizes());
for (const auto i : c10::irange(1, ndim)) {
TORCH_CHECK(grad_output.size(i) > 0,
"adaptive_max_pooling2d_backward(): Expected grad_output to have non-zero size for non-batch dimensions, "
"but grad_output has sizes ", grad_output.sizes(), " with dimension ", i,
" being empty");
}
TORCH_CHECK(input.dtype() == grad_output.dtype(),
"expected dtype ", input.dtype(), " for `grad_output` but got dtype ", grad_output.dtype());
set_output(0, input.sizes(), input.options().memory_format(input.suggest_memory_format()));
}
} // namespace meta
namespace native {
TORCH_IMPL_FUNC(adaptive_max_pool2d_out_cpu)
(const Tensor& input, IntArrayRef output_size, const Tensor& output, const Tensor& indices) {
adaptive_max_pool2d_kernel(kCPU, output, indices, input, output_size);
}
TORCH_IMPL_FUNC(adaptive_max_pool2d_backward_out_cpu)
(const Tensor& grad_output, const Tensor& input, const Tensor& indices, const Tensor& grad_input) {
grad_input.zero_();
adaptive_max_pool2d_backward_kernel(kCPU, grad_input, grad_output, indices);
}
DEFINE_DISPATCH(adaptive_max_pool2d_kernel);
DEFINE_DISPATCH(adaptive_max_pool2d_backward_kernel);
} // at::native
} // at