This GammaGL example implements the model proposed in the paper Contrastive Multi-View Representation Learning on Graphs.
Author's code: https://github.com/kavehhassani/mvgrl
'MUTAG', 'PTC_MR', 'REDDIT-BINARY', 'IMDB-BINARY', 'IMDB-MULTI'.
Dataset | MUTAG | PTC_MR | RDT-B | IMDB-B | IMDB-M |
---|---|---|---|---|---|
# Graphs | 188 | 344 | 2000 | 1000 | 1500 |
# Classes | 2 | 2 | 2 | 2 | 3 |
Avg. Graph Size | 17.93 | 14.29 | 429.63 | 19.77 | 13.00 |
- RDT-B, IMDB-B, IMDB-M are short for REDDIT-BINARY, IMDB-BINARY and IMDB-MULTI respectively.
'Cora', 'Citeseer' and 'Pubmed'
Dataset | # Nodes | # Edges | # Classes |
---|---|---|---|
Cora | 2,708 | 10,556 | 7 |
Citeseer | 3,327 | 9,228 | 6 |
Pubmed | 19,717 | 88,651 | 3 |
--dataset str The graph dataset name. Default is 'MUTAG'.
--n_epochs int Number of training periods. Default is 200.
--patience int Early stopping steps. Default is 20.
--lr float Learning rate. Default is 0.001.
--l2_coef float Weight decay. Default is 0.0.
--batch_size int Size of a training batch. Default is 64.
--num_layers int Number of GNN layers. Default is 4.
--hidden_dim int Embedding dimension. Default is 32.
--dataset str The graph dataset name. Default is 'cora'.
--n_epochs int Number of training periods. Default is 500.
--patience int Early stopping steps. Default is 20.
--lr float Learning rate of main model. Default is 0.001.
--clf_lr float Learning rate of linear classifer. Default is 0.01.
--l2_coef float Weight decay of main model. Default is 0.0.
--clf_l2_coef float Weight decay of linear classifier. Default is 0.0.
--epsilon float Edge mask threshold. Default is 0.01.
--hidden_dim int Embedding dimension. Default is 512.
--sample_size int Subgraph size. Default is 2000.
# Enter the 'graph' directory
cd graph
# MUTAG:
TL_BACKEND=paddle python mvgrl_trainer.py --dataset MUTAG --n_epoch 20 --hidden_dim 32
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset MUTAG --n_epoch 20 --hidden_dim 32
TL_BACKEND=torch python mvgrl_trainer.py --dataset MUTAG --n_epoch 20 --hidden_dim 32
# PTC_MR:
TL_BACKEND=paddle python mvgrl_trainer.py --dataset PTC_MR --epochs 32 --hidden_dim 128
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset PTC_MR --epochs 32 --hidden_dim 128
TL_BACKEND=torch python mvgrl_trainer.py --dataset PTC_MR --epochs 32 --hidden_dim 128
# IMDB-BINARY
TL_BACKEND=paddle python mvgrl_trainer.py --dataset IMDB-BINARY --epochs 20 --hidden_dim 512 --n_layers 2
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset IMDB-BINARY --epochs 20 --hidden_dim 512 --n_layers 2
TL_BACKEND=torch python mvgrl_trainer.py --dataset IMDB-BINARY --epochs 20 --hidden_dim 512 --n_layers 2
# IMDB-MULTI
TL_BACKEND=paddle python mvgrl_trainer.py --dataset IMDB-MULTI --epochs 20 --hidden_dim 512 --n_layers 2
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset IMDB-MULTI --epochs 20 --hidden_dim 512 --n_layers 2
TL_BACKEND=torch python mvgrl_trainer.py --dataset IMDB-MULTI --epochs 20 --hidden_dim 512 --n_layers 2
For semi-supervised node classification on 'Cora', 'Citeseer'
full-graph training, see 'mvgrl_trainer.py', where we contrast the local and global representations of the whole graph.
# Enter the 'node' directory
cd node
# Cora with full graph
TL_BACKEND=paddle python mvgrl_trainer.py --dataset cora --lr 0.0005 --patience 40
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset cora
TL_BACKEND=torch python mvgrl_trainer.py --dataset cora
# Citeseer
TL_BACKEND=paddle python mvgrl_trainer.py --dataset citeseer
TL_BACKEND=tensorflow python mvgrl_trainer.py --dataset citeseer
TL_BACKEND=torch python mvgrl_trainer.py --dataset citeseer
We use the same hyper-parameter settings as stated in the original paper.
Dataset | MUTAG | PTC-MR | REDDIT-B | IMDB-B | IMDB-M |
---|---|---|---|---|---|
Accuracy Reported | 89.7 | 62.5 | 84.5 | 74.2 | 51.2 |
DGL | 89.4 | 62.2 | 85.0 | 73.8 | 51.1 |
GammaGL(tf) | 89.51 ± 0.62 | 60.25 ± 0.60 | OOM | 73.28 ± 0.61 | 50.5 ± 0.23 |
GammaGL(th) | 89.30 ± 0.71 | 60.50 ± 1.95 | OOM | 73.16 ± 0.42 | 50.95 ± 0.56 |
GammaGL(pd) | 88.39 ± 0.68 | 60.32 ± 1.96 | OOM | 72.92 ± 0.46 | 51.27 ± 0.57 |
GammaGL(ms) | --.- | --.- | --.- | --.- | --.- |
- The datasets that the authors used are slightly different from standard TUDataset (see gammagl.data.TUDataset) in the nodes' features(e.g. The node features of 'MUTAG' dataset are of dimensionality 11 rather than 7)
Dataset | Cora | Citeseer | Pubmed |
---|---|---|---|
Accuracy Reported | 86.8 | 73.3 | 80.1 |
DGL-sample | 83.2 | 72.6 | 79.8 |
DGL-full | 83.5 | 73.7 | OOM |
GammaGL(tf) | 82.73 ± 0.33 | 70.96 ± 0.43 | OOM |
GammaGL(th) | 81.71 ± 0.85 | 70.9 ± 0.56 | OOM |
GammaGL(pd) | 82.23 ± 1.09 | 70.91 ± 0.06 | OOM |
GammaGL(ms) | --.- | --.- | OOM |
- We fail to reproduce the reported accuracy on 'Cora', even with the authors' code.
- The accuracy reported by the original paper is based on fixed-sized subgraph-training.
- The model performance is the average of 5 tests