Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning
Dataset
# Nodes_paper
# Nodes_author
# Nodes_subject
ACM
4019
7167
60
Refer to ACM .
TL_BACKEND=" torch" python HeCo_trainer.py --dataset acm --hidden_dim 64 --nb_epochs 10000 --eva_lr 0.05 --lr 0.0075 --l2_coef 0 --tau 0.8 --lam 0.5 --feat_drop 0.3 --attn_drop 0.3
TL_BACKEND=" paddle" python HeCo_trainer.py --dataset acm --hidden_dim 64 --nb_epochs 10000 --eva_lr 0.05 --lr 0.0075 --l2_coef 0 --tau 0.8 --lam 0.5 --feat_drop 0.3 --attn_drop 0.3
TL_BACKEND=" tensorflow" python HeCo_trainer.py --dataset acm --hidden_dim 64 --nb_epochs 10000 --eva_lr 0.05 --lr 0.0075 --l2_coef 0 --tau 0.8 --lam 0.5 --feat_drop 0.3 --attn_drop 0.3
number of train_labels
Paper
Our(tf)
Our(pd)
Our(torch)
20
88.56±0.8
84.7±0.4
85.0±0.4
85.0±0.3
40
87.61±0.5
88.1±0.3
88.63±0.1
88.64±0.2
60
89.04±0.5
87.4±0.4
88.3±0.4
88.4±0.6
number of train_labels
Paper
Our(tf)
Our(pd)
Our(torch)
20
88.13±0.8
84.1±0.4
84.8±0.8
85.0±0.4
40
87.45±0.5
87.9±0.3
88.43±0.1
88.53±0.6
60
88.71±0.5
87.4±0.4
88.2±0.5
88.45±0.6
number of train_labels
Paper
Our(tf)
Our(pd)
Our(torch)
20
96.49±0.3
93.8±0.4
95.1±0.4
95.3±0.3
40
96.4±0.4
96.4±0.3
97.1±0.2
97.4±0.3
60
96.55±0.3
95.8±0.4
96.4±0.4
96.7±0.4
For TensorFlow runs more slowly than paddlepaddle and pytorch, thus pd and torch are more recommended.