-
Notifications
You must be signed in to change notification settings - Fork 0
/
source.py
269 lines (214 loc) · 10.3 KB
/
source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import Optional, Tuple
from torch_geometric.typing import Adj, OptTensor, PairTensor
import torch
from torch import Tensor
from torch.nn import Parameter
from torch_scatter import scatter_add
from torch_sparse import SparseTensor, matmul, fill_diag, sum as sparsesum, mul
from torch_geometric.nn.inits import zeros
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import add_remaining_self_loops
from torch_geometric.utils.num_nodes import maybe_num_nodes
@torch.jit._overload
def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False,
add_self_loops=True, dtype=None):
# type: (Tensor, OptTensor, Optional[int], bool, bool, Optional[int]) -> PairTensor # noqa
pass
@torch.jit._overload
def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False,
add_self_loops=True, dtype=None):
# type: (SparseTensor, OptTensor, Optional[int], bool, bool, Optional[int]) -> SparseTensor # noqa
pass
def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False,
add_self_loops=True, dtype=None):
fill_value = 2. if improved else 1.
if isinstance(edge_index, SparseTensor):
adj_t = edge_index
if not adj_t.has_value():
adj_t = adj_t.fill_value(1., dtype=dtype)
if add_self_loops:
adj_t = fill_diag(adj_t, fill_value)
deg = sparsesum(adj_t, dim=1)
deg_inv_sqrt = deg.pow_(-0.5)
deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0.)
adj_t = mul(adj_t, deg_inv_sqrt.view(-1, 1))
adj_t = mul(adj_t, deg_inv_sqrt.view(1, -1))
return adj_t
else:
num_nodes = maybe_num_nodes(edge_index, num_nodes)
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
if add_self_loops:
edge_index, tmp_edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
assert tmp_edge_weight is not None
edge_weight = tmp_edge_weight
row, col = edge_index[0], edge_index[1]
deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow_(-0.5)
deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0)
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
class GCNConv(MessagePassing):
r"""The graph convolutional operator from the `"Semi-supervised
Classification with Graph Convolutional Networks"
<https://arxiv.org/abs/1609.02907>`_ paper
.. math::
\mathbf{X}^{\prime} = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},
where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes the
adjacency matrix with inserted self-loops and
:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.
The adjacency matrix can include other values than :obj:`1` representing
edge weights via the optional :obj:`edge_weight` tensor.
Its node-wise formulation is given by:
.. math::
\mathbf{x}^{\prime}_i = \mathbf{\Theta}^{\top} \sum_{j \in
\mathcal{N}(v) \cup \{ i \}} \frac{e_{j,i}}{\sqrt{\hat{d}_j
\hat{d}_i}} \mathbf{x}_j
with :math:`\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}`, where
:math:`e_{j,i}` denotes the edge weight from source node :obj:`j` to target
node :obj:`i` (default: :obj:`1.0`)
Args:
in_channels (int): Size of each input sample, or :obj:`-1` to derive
the size from the first input(s) to the forward method.
out_channels (int): Size of each output sample.
improved (bool, optional): If set to :obj:`True`, the layer computes
:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
(default: :obj:`False`)
cached (bool, optional): If set to :obj:`True`, the layer will cache
the computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2}` on first execution, and will use the
cached version for further executions.
This parameter should only be set to :obj:`True` in transductive
learning scenarios. (default: :obj:`False`)
add_self_loops (bool, optional): If set to :obj:`False`, will not add
self-loops to the input graph. (default: :obj:`True`)
normalize (bool, optional): Whether to add self-loops and compute
symmetric normalization coefficients on the fly.
(default: :obj:`True`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
"""
_cached_edge_index: Optional[Tuple[Tensor, Tensor]]
_cached_adj_t: Optional[SparseTensor]
def __init__(self, in_channels: int, out_channels: int,
improved: bool = False, cached: bool = False,
add_self_loops: bool = True, normalize: bool = True,
bias: bool = True, **kwargs):
kwargs.setdefault('aggr', 'add')
super().__init__(**kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.add_self_loops = add_self_loops
self.normalize = normalize
self._cached_edge_index = None
self._cached_adj_t = None
self.lin = Linear(in_channels, out_channels, bias=False,
weight_initializer='glorot')
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.lin.reset_parameters()
zeros(self.bias)
self._cached_edge_index = None
self._cached_adj_t = None
def forward(self, x: Tensor, edge_index: Adj,
edge_weight: OptTensor = None) -> Tensor:
""""""
if self.normalize:
if isinstance(edge_index, Tensor):
cache = self._cached_edge_index
if cache is None:
edge_index, edge_weight = gcn_norm( # yapf: disable
edge_index, edge_weight, x.size(self.node_dim),
self.improved, self.add_self_loops)
if self.cached:
self._cached_edge_index = (edge_index, edge_weight)
else:
edge_index, edge_weight = cache[0], cache[1]
elif isinstance(edge_index, SparseTensor):
cache = self._cached_adj_t
if cache is None:
edge_index = gcn_norm( # yapf: disable
edge_index, edge_weight, x.size(self.node_dim),
self.improved, self.add_self_loops)
if self.cached:
self._cached_adj_t = edge_index
else:
edge_index = cache
x = self.lin(x)
# propagate_type: (x: Tensor, edge_weight: OptTensor)
out = self.propagate(edge_index, x=x, edge_weight=edge_weight,
size=None)
if self.bias is not None:
out += self.bias
return out
def message(self, x_j: Tensor, edge_weight: OptTensor) -> Tensor:
return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j
def message_and_aggregate(self, adj_t: SparseTensor, x: Tensor) -> Tensor:
return matmul(adj_t, x, reduce=self.aggr)
# class GINConv(MessagePassing):
# r"""The graph isomorphism operator from the `"How Powerful are
# Graph Neural Networks?" <https://arxiv.org/abs/1810.00826>`_ paper
# .. math::
# \mathbf{x}^{\prime}_i = h_{\mathbf{\Theta}} \left( (1 + \epsilon) \cdot
# \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \right)
# or
# .. math::
# \mathbf{X}^{\prime} = h_{\mathbf{\Theta}} \left( \left( \mathbf{A} +
# (1 + \epsilon) \cdot \mathbf{I} \right) \cdot \mathbf{X} \right),
# here :math:`h_{\mathbf{\Theta}}` denotes a neural network, *.i.e.* an MLP.
# Args:
# nn (torch.nn.Module): A neural network :math:`h_{\mathbf{\Theta}}` that
# maps node features :obj:`x` of shape :obj:`[-1, in_channels]` to
# shape :obj:`[-1, out_channels]`, *e.g.*, defined by
# :class:`torch.nn.Sequential`.
# eps (float, optional): (Initial) :math:`\epsilon`-value.
# (default: :obj:`0.`)
# train_eps (bool, optional): If set to :obj:`True`, :math:`\epsilon`
# will be a trainable parameter. (default: :obj:`False`)
# **kwargs (optional): Additional arguments of
# :class:`torch_geometric.nn.conv.MessagePassing`.
# """
# def __init__(self, nn: Callable, eps: float = 0., train_eps: bool = False,
# **kwargs):
# kwargs.setdefault('aggr', 'add')
# super().__init__(**kwargs)
# self.nn = nn
# self.initial_eps = eps
# if train_eps:
# self.eps = torch.nn.Parameter(torch.Tensor([eps]))
# else:
# self.register_buffer('eps', torch.Tensor([eps]))
# self.reset_parameters()
# def reset_parameters(self):
# reset(self.nn)
# self.eps.data.fill_(self.initial_eps)
# def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj,
# size: Size = None) -> Tensor:
# """"""
# if isinstance(x, Tensor):
# x: OptPairTensor = (x, x)
# # propagate_type: (x: OptPairTensor)
# out = self.propagate(edge_index, x=x, size=size)
# x_r = x[1]
# if x_r is not None:
# out += (1 + self.eps) * x_r
# return self.nn(out)
# def message(self, x_j: Tensor) -> Tensor:
# return x_j
# def message_and_aggregate(self, adj_t: SparseTensor,
# x: OptPairTensor) -> Tensor:
# adj_t = adj_t.set_value(None, layout=None)
# return matmul(adj_t, x[0], reduce=self.aggr)
# def __repr__(self) -> str:
# return f'{self.__class__.__name__}(nn={self.nn})'