-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathitkLMMSEVectorImageFilter.txx
1023 lines (969 loc) · 49.8 KB
/
itkLMMSEVectorImageFilter.txx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkLMMSEVectorImageFilter.txx,v $
Language: C++
Date: $Date: 2005/05/4 14:28:51 $
Version: $Revision: 1.1
=========================================================================*/
#ifndef _itkLMMSEVectorImageFilter_txx
#define _itkLMMSEVectorImageFilter_txx
#include "itkLMMSEVectorImageFilter.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkMath.h"
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// COMMENT THIS LINE TO AVOID THE DENUG CODE
//#define USE_DEBUG_CODE
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
#define DEBUG_FILE "/Users/atriveg/Downloads/WorkModes.nrrd"
#include "itkImageFileWriter.h"
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
namespace itk
{
/** Constructor */
template <class TInputImage, class TOutputImage>
LMMSEVectorImageFilter<TInputImage, TOutputImage>::LMMSEVectorImageFilter()
{
m_Radius.Fill(1);
m_RadiusFeatures.Fill(1);
m_NDWI = 0;
m_NBaselines = 0;
m_DWI = IndicatorType( 0 );
m_Baselines = IndicatorType( 0 );
m_Sigma = 20.0f;
m_H = 1.2;
m_SigmaR = 0;
m_SigmaG = 0;
m_SigmaB = 0;
m_SetZeroBck = false;
m_OnlyUNLM = false;
m_FilterOutliers = false;
m_GradientList = GradientListType(0);
m_Neighbours = 1; // By default, we use the gradient by gradient behaviour
m_NeighboursInd = NeighboursIndType(0, 0);
m_Mask = NULL;
m_Featuresx = NULL;
m_Featuresy = NULL;
m_Featuresz = NULL;
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
this->SetNumberOfThreads(1);
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
template <class TInputImage, class TOutputImage>
void LMMSEVectorImageFilter<TInputImage, TOutputImage>
::BeforeThreadedGenerateData( void )
{
//======================================================================
// BLOCK I: ORDER THE GRADIENTS AND COMPUTE THE NEIGHBORS
if( m_Neighbours > m_NDWI )
{
m_Neighbours = m_NDWI;
}
// Find the closest neighbours to each gradient direction
if( m_NDWI != m_DWI.GetSize() || m_NBaselines != m_Baselines.GetSize() ||
(m_NDWI < 1 && m_NBaselines < 1) || m_GradientList.size() != m_NDWI || m_Neighbours < 1 || m_Neighbours > m_NDWI )
{
itkExceptionMacro( << "Bad initialisation of the filter!!! Check parameters, please" );
}
if( (m_NDWI+m_NBaselines) != this->GetInput()->GetVectorLength() )
itkExceptionMacro( << "Bad initialisation of the filter!!! Check parameters, please" );
m_NeighboursInd = NeighboursIndType( m_NDWI, m_Neighbours );
// Vectors to compute the distance from each gradient direction to each other gradient direction; we need to sort to
// find the closest
// gradient directions to each of one.
std::vector<OrderType> distances;
OrderType orderElement;
for( unsigned int g = 0; g < m_NDWI; ++g ) // For each gradient direction
{
distances.clear();
for( unsigned int k = 0; k < m_NDWI; ++k ) // Compare to each other gradient direction
{
orderElement[0] = (double)k;
orderElement[1] = itk::NumericTraits<double>::Zero;
for( unsigned int d = 0; d < TInputImage::ImageDimension; ++d ) // Sum of squared differences (euclidean norm)
{
orderElement[1] += ( m_GradientList[g][d] * m_GradientList[k][d] );
}
if( orderElement[1] < -1.0f || orderElement[1] > 1.0f )
{
orderElement[1] = 0.0f;
}
else
{
orderElement[1] = ::acos( orderElement[1] );
}
if( 3.141592654f - orderElement[1] < orderElement[1] )
{
orderElement[1] = 3.141592654f - orderElement[1];
}
distances.push_back( orderElement );
}
std::sort( distances.begin(), distances.end(), UNLM_gradientDistance_smaller );
for( unsigned int k = 0; k < m_Neighbours; ++k )
{
m_NeighboursInd[g][k] = m_DWI[(unsigned int)(distances[k][0])];
}
}
//======================================================================
// BLOCK II: COMPUTE THE RGB PROJECTIONS FROM THE DWI CHANNELS:
RGBProjectionPointer projx = RGBProjectionType::New();
projx->SetInput( this->GetInput() );
projx->SetProjectionCoordinate(0);
projx->SetDWI( m_DWI );
projx->SetGradientsTable( m_GradientList );
RGBProjectionPointer projy = RGBProjectionType::New();
projy->SetInput( this->GetInput() );
projy->SetProjectionCoordinate(1);
projy->SetDWI( m_DWI );
projy->SetGradientsTable( m_GradientList );
RGBProjectionPointer projz = RGBProjectionType::New();
projz->SetInput( this->GetInput() );
projz->SetProjectionCoordinate(2);
projz->SetDWI( m_DWI );
projz->SetGradientsTable( m_GradientList );
//======================================================================
// BLOCK III: COMPUTE THE SALIENT FEATURES RELATED TO THE PATCH DISTANCES:
// R (x) - Channel
L0Pointer l0x = L0Type::New();
L1Pointer l1x = L1Type::New();
L2Pointer l2x = L2Type::New();
l0x->SetRadius( this->GetRadiusFeatures()[0] );
l0x->SetCoordinate( 0 );
l1x->SetRadius( this->GetRadiusFeatures()[1] );
l1x->SetCoordinate( 1 );
l2x->SetRadius( this->GetRadiusFeatures()[2] );
l2x->SetCoordinate( 2 );
l0x->SetInput( projx->GetOutput() );
l1x->SetInput( l0x->GetOutput() );
l2x->SetInput( l1x->GetOutput() );
// G (y) - Channel
L0Pointer l0y = L0Type::New();
L1Pointer l1y = L1Type::New();
L2Pointer l2y = L2Type::New();
l0y->SetRadius( this->GetRadiusFeatures()[0] );
l0y->SetCoordinate( 0 );
l1y->SetRadius( this->GetRadiusFeatures()[1] );
l1y->SetCoordinate( 1 );
l2y->SetRadius( this->GetRadiusFeatures()[2] );
l2y->SetCoordinate( 2 );
l0y->SetInput( projy->GetOutput() );
l1y->SetInput( l0y->GetOutput() );
l2y->SetInput( l1y->GetOutput() );
// B (z) - Channel
L0Pointer l0z = L0Type::New();
L1Pointer l1z = L1Type::New();
L2Pointer l2z = L2Type::New();
l0z->SetRadius( this->GetRadiusFeatures()[0] );
l0z->SetCoordinate( 0 );
l1z->SetRadius( this->GetRadiusFeatures()[1] );
l1z->SetCoordinate( 1 );
l2z->SetRadius( this->GetRadiusFeatures()[2] );
l2z->SetCoordinate( 2 );
l0z->SetInput( projz->GetOutput() );
l1z->SetInput( l0z->GetOutput() );
l2z->SetInput( l1z->GetOutput() );
//======================================================================
// BLOCK III: Update the pipelines and keep the usable outputs:
l2x->Update();
l2y->Update();
l2z->Update();
m_Featuresx = l2x->GetOutput();
m_Featuresy = l2y->GetOutput();
m_Featuresz = l2z->GetOutput();
// Compute the amount of residual noise in the projected images
// as a function of the amount of noise in the original MRI
// image and the weighting factors using in each channel.
//
// NOTE: if the weights are w_i, we estimate the variance is
// sum_i w_i^2 sigma^2, with sigma the original std of noise in
// the complex domain of the x-space. This is not strictly valid
// since we have Rician (not Gaussian) noise and the std is a
// function of the mean. This approximation is only valid for
// high SNR.
//
// HOWEVER: in the large SNR limit (A>>sigma), the noise is
// almost Gaussian and sigma_Rician \simeq sigam_Gaussian. In
// the low SNR case (A<<sigma), the noise is almost Rayleigh
// and sigma_Rician \simeq sqrt((4-pi)/2)*sigma_Gaussian
// < Sigma_Gaussian. I.e: for low SNR we over-estimate the
// noise, hence the filtering is more agressive. For high
// SNR the estimation is accurate, hence we preserve the
// details. This makes a lot of sense, by the way...
m_SigmaR = m_Sigma * projx->GetCorrectionFactor();
m_SigmaG = m_Sigma * projy->GetCorrectionFactor();
m_SigmaB = m_Sigma * projz->GetCorrectionFactor();
return;
}
/** The requested input region is larger than the corresponding output, so we need to override this method: */
template <class TInputImage, class TOutputImage>
void LMMSEVectorImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
throw (InvalidRequestedRegionError)
{
// Call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// Get pointers to the input and output
InputImagePointer inputPtr = const_cast<TInputImage *>( this->GetInput() );
OutputImagePointer outputPtr = this->GetOutput();
if( !inputPtr || !outputPtr )
{
return;
}
// Get a copy of the input requested region (should equal the output
// requested region)
InputImageRegionType inputRequestedRegion = inputPtr->GetRequestedRegion();
// Pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( m_Radius );
// Crop the input requested region at the input's largest possible region
inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion() );
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
/**
This method completely differs from the former implementation. Instead of
having square (cubic) neighborhoods, the neighborhoods have an arbitrary
shape adapted to the actual contents of the image: we use weigts computed
in a similar fashion as in the non-local means approach to account only
for those neighbors whose diffusion structure is similar enough to that
of the voxel being studied.
*/
template <class TInputImage, class TOutputImage>
void LMMSEVectorImageFilter<TInputImage, TOutputImage>
::ThreadedGenerateData( const OutputImageRegionType& outputRegionForThread,
ThreadIdType itkNotUsed(threadId) )
{
//==================================================================================================================================
// Iterators:
ImageRegionConstIteratorWithIndex<FeaturesMapType> mitx; // Iterator for the map of local featrues
ImageRegionConstIteratorWithIndex<FeaturesMapType> mity; // Iterator for the map of local featrues
ImageRegionConstIteratorWithIndex<FeaturesMapType> mitz; // Iterator for the map of local featrues
ImageRegionIterator<OutputImageType> it; // Iterator for the output image
ImageRegionConstIterator<InputImageType> bit; // Iterator for the output image
ImageRegionConstIterator<InputImageType> search; // Search iterator
ImageRegionConstIterator<FeaturesMapType> msitx; // Iterator for search in the map of local features
ImageRegionConstIterator<FeaturesMapType> msity; // Iterator for search in the map of local features
ImageRegionConstIterator<FeaturesMapType> msitz; // Iterator for search in the map of local features
// Input and output
InputImageConstPointer input = this->GetInput();
OutputImagePointer output = this->GetOutput();
//==================================================================================================================================
unsigned int numNeighbours = 1;
InputImageSizeType baseSearchSize, searchSize;
for( unsigned int d=0; d<TInputImage::ImageDimension; ++d ){
// The number of voxels which are going to be accounted in the WA
numNeighbours *= ( 2*m_Radius[d] + 1 );
baseSearchSize[d] = ( 2*m_Radius[d] + 1 );
}
InputImageRegionType searchRegion;
//==================================================================================================================================
float normNoisex = ( m_H * m_SigmaR * m_SigmaR ) * ComputeTraceMO1( this->GetRadiusFeatures() );
normNoisex = 1.0f/normNoisex;
float normNoisey = ( m_H * m_SigmaG * m_SigmaG ) * ComputeTraceMO1( this->GetRadiusFeatures() );
normNoisey = 1.0f/normNoisey;
float normNoisez = ( m_H * m_SigmaB * m_SigmaB ) * ComputeTraceMO1( this->GetRadiusFeatures() );
normNoisez = 1.0f/normNoisez;
float lsnorm[TInputImage::ImageDimension];
for( unsigned int k=0; k<TInputImage::ImageDimension; ++k ){
lsnorm[k] = itk::NumericTraits<float>::Zero;
//=====================================================================
float* weight = new float[ m_RadiusFeatures[k] ];
float wsum = itk::NumericTraits<float>::Zero;
for( int j=0; j<((int)m_RadiusFeatures[k]); ++j ){
weight[j] = ::exp( -((float)(m_RadiusFeatures[k]-j)*(m_RadiusFeatures[k]-j))/2.0f );
wsum += 2.0f*weight[j];
}
wsum += weight[m_RadiusFeatures[k]-1];
wsum = 1.0f/wsum;
//=====================================================================
for( int j=-((int)m_RadiusFeatures[k]); j<0; ++j )
lsnorm[k] += 2.0f * j*j * weight[j+m_RadiusFeatures[k]] * wsum;
//=====================================================================
delete[] weight;
lsnorm[k] = 1.0f/lsnorm[k];
}
// This constant is used to assess the theoretical self-similarity of
// the central pixel to avoid over-weighting:
double centerSelfSimilarity = std::exp( -itk::NumericTraits<double>::One / m_H );
//==================================================================================================================================
// CREATE THE ITERATORS:
mitx = ImageRegionConstIteratorWithIndex<FeaturesMapType>( m_Featuresx, outputRegionForThread );
mity = ImageRegionConstIteratorWithIndex<FeaturesMapType>( m_Featuresy, outputRegionForThread );
mitz = ImageRegionConstIteratorWithIndex<FeaturesMapType>( m_Featuresz, outputRegionForThread );
bit = ImageRegionConstIterator<InputImageType>( input, outputRegionForThread );
it = ImageRegionIterator<OutputImageType>( output, outputRegionForThread );
InputImageIndexType originR;
InputImageSizeType radiusR;
radiusR = m_Radius;
//==================================================================================================================================
// ALLOCATE MEMORY FOR THE VECTORS OF MOMENTS TO BE COMPUTED:
double* diff = new double[m_NDWI + m_NBaselines];
double* dSecondAveragedMoment = new double[m_NDWI + m_NBaselines];
double* dSquaredMagnitude = new double[m_NDWI + m_NBaselines];
double* dFiltered = new double[m_NDWI + m_NBaselines];
double* dFourthAveragedMoment = new double[m_NDWI + m_NBaselines];
double* bSqMag = new double[m_NBaselines];
double* bSqAvg = new double[m_NBaselines];
double* bRes = new double[m_NBaselines];
double* dSqMag = new double[m_Neighbours];
double* dSqAvg = new double[m_Neighbours];
double* dRes = new double[m_Neighbours];
//==================================================================================================================================
// PREPARE THE MASK IN CASE IT IS USED:
MaskIteratorType maskIterator;
if( m_Mask ){
maskIterator = MaskIteratorType( m_Mask, outputRegionForThread );
maskIterator.GoToBegin();
}
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
typedef itk::Image<unsigned char,3> DebugImageType;
typedef DebugImageType::Pointer DebugImagePointer;
DebugImagePointer debugImage = DebugImageType::New();
debugImage->SetOrigin( input->GetOrigin() );
debugImage->SetSpacing( input->GetSpacing() );
debugImage->SetDirection( input->GetDirection() );
debugImage->SetRegions( input->GetLargestPossibleRegion() );
debugImage->Allocate();
debugImage->FillBuffer(0);
ImageRegionIterator<DebugImageType> debugIt = ImageRegionIterator<DebugImageType>( debugImage, outputRegionForThread );
debugIt.GoToBegin();
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
//==================================================================================================================================
// DO THE ACTUAL COMPUTATIONS:
for( it.GoToBegin(),bit.GoToBegin(),mitx.GoToBegin(),mity.GoToBegin(),mitz.GoToBegin();
!it.IsAtEnd();
++it,++bit,++mitx,++mity,++mitz ){
//-------------------------------------------------------------------------------------------------------------
// In case we use a mask, there is a chance we have to pass the input directly
// to the output:
if( m_Mask ){
if( !maskIterator.Get() ){ // The value of the mask is 0
if( m_SetZeroBck ){
OutputPixelType outpx( this->GetInput()->GetVectorLength() );
outpx.Fill( itk::NumericTraits<ScalarType>::Zero );
it.Set( outpx );
}
else
it.Set( bit.Get() );
++maskIterator; // increment the iterator
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
debugIt.Set(0);
++debugIt;
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
continue; // and go for the next pixel
}
else
++maskIterator; // only increment the iterator;
}
//-------------------------------------------------------------------------------------------------------------
// CREATE THE REGION TO SEARCH AND THE ITERATORS:
searchSize = baseSearchSize;
originR = mitx.GetIndex() - radiusR;
bool needToComputeCenter = false;
unsigned int midPosition = numNeighbours/2;
for( unsigned int d=0; d<TInputImage::ImageDimension; ++d ){
if( originR[d]<0 ){
searchSize[d] += originR[d];
originR[d] = 0;
needToComputeCenter = true;
}
if( originR[d]+searchSize[d] > input->GetLargestPossibleRegion().GetSize()[d] ){
searchSize[d] = input->GetLargestPossibleRegion().GetSize()[d] - originR[d];
needToComputeCenter = true;
}
}
//-------------------------------------------------------------------------------------------------------------
// Compute the index corresponding to the original center:
if( needToComputeCenter ){
unsigned int aux = 1;
for( unsigned int d=0; d<TInputImage::ImageDimension; ++d )
aux *= searchSize[d];
midPosition = 0;
if( aux>0 ){
for( int d=(int)TInputImage::ImageDimension-1; d>=0; --d ){
aux /= searchSize[d];
midPosition += ( mitx.GetIndex()[d] - originR[d] )*aux;
}
}
}
//-------------------------------------------------------------------------------------------------------------
// Initialize the search iterators:
searchRegion.SetIndex( originR );
searchRegion.SetSize( searchSize );
search = ImageRegionConstIterator<InputImageType>( input, searchRegion );
msitx = ImageRegionConstIterator<FeaturesMapType>( m_Featuresx, searchRegion );
msity = ImageRegionConstIterator<FeaturesMapType>( m_Featuresy, searchRegion );
msitz = ImageRegionConstIterator<FeaturesMapType>( m_Featuresz, searchRegion );
//-------------------------------------------------------------------------------------------------------------
// Initalize the vectors to compute the moments:
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
dSecondAveragedMoment[ch] = itk::NumericTraits<double>::Zero;
dFourthAveragedMoment[ch] = itk::NumericTraits<double>::Zero;
}
//-------------------------------------------------------------------------------------------------------------
// FILTER THE PIXEL
LSGradientsL2 centerx = mitx.Get();
LSGradientsL2 centery = mity.Get();
LSGradientsL2 centerz = mitz.Get();
float norm = itk::NumericTraits<float>::Zero; // To normalize the weights to sum to 1
float weight, weightx, weighty, weightz;
unsigned int pos; // Auxiliar variable
for( pos=0,search.GoToBegin(),msitx.GoToBegin(),msity.GoToBegin(),msitz.GoToBegin(); !search.IsAtEnd(); ++search,++msitx,++msity,++msitz,++pos ){
// Compute the weight associated to the current voxel:
if( pos!=midPosition ){
LSGradientsL2 valuex = msitx.Get();
LSGradientsL2 valuey = msity.Get();
LSGradientsL2 valuez = msitz.Get();
weightx = (centerx.LLL-valuex.LLL)*(valuex.LLL-centerx.LLL);
weightx += (centerx.HLL-valuex.HLL)*(valuex.HLL-centerx.HLL)*lsnorm[0];
weightx += (centerx.LHL-valuex.LHL)*(valuex.LHL-centerx.LHL)*lsnorm[1];
weightx += (centerx.LLH-valuex.LLH)*(valuex.LLH-centerx.LLH)*lsnorm[2];
weightx *= normNoisex;
weighty = (centery.LLL-valuey.LLL)*(valuey.LLL-centery.LLL);
weighty += (centery.HLL-valuey.HLL)*(valuey.HLL-centery.HLL)*lsnorm[0];
weighty += (centery.LHL-valuey.LHL)*(valuey.LHL-centery.LHL)*lsnorm[1];
weighty += (centery.LLH-valuey.LLH)*(valuey.LLH-centery.LLH)*lsnorm[2];
weighty *= normNoisey;
weightz = (centerz.LLL-valuez.LLL)*(valuez.LLL-centerz.LLL);
weightz += (centerz.HLL-valuez.HLL)*(valuez.HLL-centerz.HLL)*lsnorm[0];
weightz += (centerz.LHL-valuez.LHL)*(valuez.LHL-centerz.LHL)*lsnorm[1];
weightz += (centerz.LLH-valuez.LLH)*(valuez.LLH-centerz.LLH)*lsnorm[2];
weightz *= normNoisez;
weight = std::exp( (weightx+weighty+weightz)/3 );
norm += weight;
}
else{
weight = centerSelfSimilarity;
norm += weight;
// In the center of the neighborhood we have to keep the
// non-filtered value too:
InputPixelType ipx = search.Get();
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
double pix = ipx[ch];
dSquaredMagnitude[ch] = pix*pix;
}
}
// Compute the actual moments:
InputPixelType cipx = search.Get();
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
double pix = cipx[ch];
pix *= pix;
dSecondAveragedMoment[ch] += ( pix * weight );
pix *= pix;
dFourthAveragedMoment[ch] += ( pix * weight );
}
}
//-------------------------------------------------------------------------------------------------------------
// Now we have searched all the neighborhood, we can normalize the
// sums to compute the actual moments; these are the moments of the
// measurements M, so we need to correct them to compute the moments
// of the original magnitude A^2:
norm = itk::NumericTraits<float>::One / norm;
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
dSecondAveragedMoment[ch] *= norm;
dFourthAveragedMoment[ch] *= norm;
diff[ch] = dSquaredMagnitude[ch] - dSecondAveragedMoment[ch];
dSecondAveragedMoment[ch] -= 2*m_Sigma*m_Sigma;
if( dSecondAveragedMoment[ch] < 100000 * std::numeric_limits<double>::epsilon() )
dSecondAveragedMoment[ch] = 100000 * std::numeric_limits<double>::epsilon();
dFourthAveragedMoment[ch] -= 8*m_Sigma*m_Sigma*( dSecondAveragedMoment[ch] + m_Sigma*m_Sigma );
if( dFourthAveragedMoment[ch] < 100000 * std::numeric_limits<double>::epsilon() )
dFourthAveragedMoment[ch] = 100000 * std::numeric_limits<double>::epsilon();
}
// -----------------------------------------------------------------------------------------------------------------------
// Now, we have estimates of the moments of A. We have computed as well the difference M - E{M}, that has to be
// filtered with the inverse of the covariance matrix C_M2M2.
const unsigned int MAX_ALLOWED_VAR = 1000;
const float CFACT1 = 5.0f;
OutputPixelType outPixel = bit.Get(); // Auxiliar output pixel
// -Normalization factor:
unsigned int count = 0;
double normal = itk::NumericTraits<double>::Zero;
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
double dsqMVar = dFourthAveragedMoment[ch] - dSecondAveragedMoment[ch]*dSecondAveragedMoment[ch];
if( dsqMVar>0 ){
if( dSecondAveragedMoment[ch] > 100 * std::numeric_limits<double>::epsilon() ){
normal += ( dsqMVar / (dSecondAveragedMoment[ch]*dSecondAveragedMoment[ch]) );
count++;
}
}
}
if( count>0 )
normal /= count;
// -----------------------------------------------------------------------------------------------------------------------
// If the "OnlyUNLM" mode has been set, we just fix count=0 here,
// so that we go straight to the "else" statement, i.e. we simply
// keep the second order moment <A^2>0<M^2> - 2·sigma^2. This is
// equivalent to an unbiased non-local means whose widths are
// computed from the RGB projections:
if( m_OnlyUNLM )
count = 0;
// - Background checking:
if( count >= m_NBaselines ){
// - Variability checking:
if( normal <= 100 * std::numeric_limits<double>::epsilon() ){
// The Variability is extremely low, so it is likely that an
// homogeneous region is being filtered. In this case,
// ||C_A2A2|| << ||C_M2M2||, so we simply use the unbiased
// estimate of the second order moment:
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch )
dFiltered[ch] = dSecondAveragedMoment[ch];
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
debugIt.Set( 50 );
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
else if( normal > MAX_ALLOWED_VAR )
{
// The variability is too high, so C_M2M2 is close to singular
// and numerical problems could arise.
if( m_FilterOutliers ){
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch )
dFiltered[ch] = dSecondAveragedMoment[ch];
}
else{
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch )
dFiltered[ch] = dSquaredMagnitude[ch];
}
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
debugIt.Set( 100 );
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
else
{
// This is the normal case, and should be the one present in the majority of the voxels of the image
// -----------------------------------------------------------------------------------------------------------------------
// First, filter the baseline images, all together:
double minSqAvg = itk::NumericTraits<double>::max();
for( unsigned int ch=0; ch<m_NBaselines; ++ch ){
bSqMag[ch] = diff[ m_Baselines[ch] ];
bSqAvg[ch] = dSecondAveragedMoment[ m_Baselines[ch] ];
if( bSqAvg[ch] < minSqAvg )
minSqAvg = bSqAvg[ch];
}
// - Pre-whitening of the input:
if( minSqAvg > CFACT1*m_Sigma*m_Sigma ){
// In this case the power series expansion is convergent:
this->CMMInversion( bSqMag, bSqAvg, normal, bRes, 10, m_NBaselines );
}
else{
// The serie expansion is not convergent, and the linear
// correction is not stable; the aproximation is
// not accurate, but this corresponds mainly to background
// pixels, so it is not so important
this->ComputeInverseMatrix( bSqMag, bSqAvg, normal, bRes, m_NBaselines );
}
// - Product with C_A2M2
// Scalar product with the vector of second order moments:
double dp = itk::NumericTraits<double>::Zero;
for( unsigned int ch=0; ch<m_NBaselines; ++ch )
dp += bRes[ch] * bSqAvg[ch];
// - Correction of the output value:
for( unsigned int ch=0; ch<m_NBaselines; ++ch )
dFiltered[m_Baselines[ch]] = (1.0f+normal*dp) * bSqAvg[ch];
// -----------------------------------------------------------------------------------------------------------------------
// Now, filter the gradient images
unsigned int top = m_NDWI;
if( m_Neighbours == m_NDWI )
top = 1;
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
unsigned char myMode = 150;
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
for( unsigned int g=0; g<top; ++g ){
minSqAvg = itk::NumericTraits<double>::max(); // Initialise maximum
// Generate the vector with the appropriate measures, i.e., the ones from the closest gradient directions
for( unsigned int ch=0; ch<m_Neighbours; ++ch ){
dSqMag[ch] = diff[ m_NeighboursInd[g][ch] ];
dSqAvg[ch] = dSecondAveragedMoment[ m_NeighboursInd[g][ch] ];
if( dSqAvg[ch] < minSqAvg )
minSqAvg = dSqAvg[ch];
}
// - Pre-whitening of the input:
if( minSqAvg > CFACT1*m_Sigma*m_Sigma ){
// In this case, the series expansion is convergent, so we may
// perform the linear correction
this->CMMInversion( dSqMag, dSqAvg, normal, dRes, 10, m_Neighbours );
}
else{
// The series expansion is not convergent, and the linear correction is not stable; the aproximation is
// not accurate, but this corresponds mainly to background pixels, so it is not so important
this->ComputeInverseMatrix( dSqMag, dSqAvg, normal, dRes, m_Neighbours );
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
myMode = 200;
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
// - Product with C_A2M2
// Scalar product with the vector of second order moments:
dp = itk::NumericTraits<double>::Zero;
for( unsigned int ch=0; ch<m_Neighbours; ++ch )
dp += dRes[ch] * dSqAvg[ch];
if( m_Neighbours==m_NDWI ){
// - Correction of the output value:
for( unsigned int ch=0; ch<m_Neighbours; ++ch )
dFiltered[m_NeighboursInd[g][ch]] = (1.0f + normal*dp) * dSqAvg[ch];
}
else
dFiltered[m_DWI[g]] = (1.0f + normal*dp) * dSqAvg[0];
}
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
debugIt.Set( myMode );
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
// Compute the square root of the output, and check if the result is physically consisitent:
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
if( dFiltered[ch] > 0 )
dFiltered[ch] = std::sqrt( dFiltered[ch] );
else
dFiltered[ch] = 0;
}
}
else{ // In this case, the second order moment is too small; this is likely to occur in the background
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch ){
dFiltered[ch] = dSecondAveragedMoment[ch];
if( dFiltered[ch]>0 )
dFiltered[ch] = std::sqrt(dFiltered[ch]);
else
dFiltered[ch] = itk::NumericTraits<double>::Zero;
}
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
debugIt.Set( 250 );
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
//-------------------------------------------------------------------------------------------------------------
// FINALLY, SET THE OUTPUT PIXEL
for( unsigned int ch=0; ch<this->GetInput()->GetVectorLength(); ++ch )
outPixel[ch] = static_cast<ScalarType>( dFiltered[ch] );
it.Set( static_cast<OutputPixelType>( outPixel ) );
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
++debugIt;
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
}
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
// DEBUG:
#ifdef USE_DEBUG_CODE
typedef itk::ImageFileWriter<DebugImageType> DebugImageWriterType;
typedef DebugImageWriterType::Pointer DebugImageWriterPointer;
DebugImageWriterPointer debugWriter = DebugImageWriterType::New();
debugWriter->SetInput( debugImage );
debugWriter->SetFileName( DEBUG_FILE );
debugWriter->Update();
#endif
/** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& */
//==================================================================================================================================
// CLEAR ALL MANUALLY ALLOCATED MEMORY:
delete[] diff;
delete[] dSecondAveragedMoment;
delete[] dSquaredMagnitude;
delete[] dFiltered;
delete[] dFourthAveragedMoment;
delete[] bSqMag;
delete[] bSqAvg;
delete[] bRes;
delete[] dSqMag;
delete[] dSqAvg;
delete[] dRes;
}
/** Smart approximate inversion of C_{M^2M^2} (high SNR case)*/
template <class TInputImage, class TOutput>
void LMMSEVectorImageFilter<TInputImage, TOutput>
::CMMInversion( const double* measures, const double* squaredAverages, double normal, double* whitened,
unsigned int order,
unsigned int K ) const
{
// Where:
// measures: the squared measurements, which is, the original data (one per channel)
// squaredAverages: The vector containing the second order moment for each DWI channel
// normal: the variance of the second order moment normalised by the square of the second order moment
// whitened: the processed signal, which is, C_MM^(-1)*(M^2-E{M^2})
// order: the number of iterations, i.e., the order of Taylor series expansion
// Auxiliar value to precompute constants:
if( K == 1 )
{
double var = m_Sigma * m_Sigma;
double aux = squaredAverages[0];
aux = normal * aux * aux + 4.0f * var * aux + 4.0f * var * var;
whitened[0] = measures[0] / aux;
return;
}
normal = itk::NumericTraits<double>::One / normal; // For convenience
double aux = 4.0f * m_Sigma * m_Sigma * normal;
// The terms in the inverse matrix:
double Ad = aux;
double* Ai = new double[K];
for( unsigned int k = 0; k < K; ++k )
{
Ad += squaredAverages[k];
Ai[k] = itk::NumericTraits<double>::One / ( aux * squaredAverages[k] );
}
Ad = -itk::NumericTraits<double>::One / ( aux * Ad );
// Now, recursively process the output; initiallise w_0 = x
for( unsigned int k = 0; k < K; ++k )
{
whitened[k] = measures[k];
}
double cum; // Auxiliar value
aux *= (m_Sigma * m_Sigma);
// Iterate: w_{n+1} = x - D^{-1}w_n
for( unsigned int o = 0; o < order; ++o ) // If order=0, this loop does nothing!
{ // Compute A_d*w
cum = itk::NumericTraits<double>::Zero; // Initiallise acumulator
for( unsigned int k = 0; k < K; ++k )
{
cum += whitened[k];
}
cum *= Ad;
// Compute A_i*w
for( unsigned int k = 0; k < K; ++k )
{
whitened[k] = measures[k] - aux * ( Ai[k] * whitened[k] + cum );
}
}
// Now we have the truncated series of ( Id + D^(-1) )^(-1). It remains to
// multiplicate by D^(-1):
// Compute A_d*w
cum = itk::NumericTraits<double>::Zero; // Initiallise acumulator
for( unsigned int k = 0; k < K; ++k )
{
cum += whitened[k];
}
cum *= Ad;
// Compute A_i*w + A_d*w and normalise
for( unsigned int k = 0; k < K; ++k )
{
whitened[k] = ( Ai[k] * whitened[k] + cum ) * normal;
}
// Delete allocated memory:
delete[] Ai;
return;
}
/** Matrix inversion; the general case */
template <class TInputImage, class TOutput>
bool LMMSEVectorImageFilter<TInputImage, TOutput>
::ComputeInverseMatrix( const double* measures, const double* squaredAverages, double normal, double* whitened,
unsigned int K ) const
{
if( K == 1 )
{
double var = m_Sigma * m_Sigma;
double aux = squaredAverages[0];
aux = normal * aux * aux + 4.0f * var * aux + 4.0f * var * var;
whitened[0] = measures[0] / aux;
return true;
}
// Compute the matrix to invert
double* * matrix = new double *[K];
for( unsigned int j = 0; j < K; ++j )
{
matrix[j] = new double[K];
}
for( unsigned int j = 0; j < K; ++j )
{
matrix[j][j] = normal * squaredAverages[j] * squaredAverages[j] + 4 * m_Sigma * m_Sigma
* (squaredAverages[j] + m_Sigma * m_Sigma);
for( unsigned int k = j + 1; k < K; ++k )
{
matrix[j][k] = normal * squaredAverages[j] * squaredAverages[k];
matrix[k][j] = matrix[j][k];
}
}
// Compute the independent term:
double* iterm = new double[K];
for( unsigned int j = 0; j < K; ++j )
{
iterm[j] = measures[j];
}
// For each column col = 1 to m_Channels-1, we need to make zeros in rows from
// col+1 to m_Channels (note that in C++ array indices are 0-based):
for( unsigned int col = 0; col < K - 1; ++col ) // For each column
{ // We need a non-null element in the position (col,col), in order to
// accomplish gaussian elimination:
if( fabs(matrix[col][col]) <= 1e-10 )
{
// Bad luck! The element is zero. We need to add a complete row to
// the row in position c, so that the new element in position (c,c)
// is not null. Find the first row for which the element (row,col)
// is non-zero:
unsigned int row = col + 1;
while( fabs(matrix[row][col]) <= 1e-10 && row < K )
{
++row;
}
// If we are not able to find a row satisfying this condition, then
// the matrix is singular, and this should not be the case; for
// this reason, we do not perform bound checking, for efficiency. We
// assume that row is a valid position, and then correct the input
// and output:
if( row == K ) // Singular matrix!!!
{
for( unsigned int j = 0; j < K; ++j )
{
delete[] matrix[j];
}
delete[] matrix;
delete[] iterm;
return false;
}
for( unsigned int cc = col; cc < K; ++cc )
{
matrix[col][cc] += matrix[row][cc];
}
iterm[col] += iterm[row];
}
// At this point, we have a valid (col,col), element. We scale the whole
// corresponding col-th row so that the pivoting element is simply 1:
double scale = itk::NumericTraits<double>::One / matrix[col][col];
for( unsigned int cc = col; cc < K; ++cc )
{
matrix[col][cc] *= scale;
}
iterm[col] *= scale;
// Now, we may perform gaussian elimination for each row:
for( unsigned int row = col + 1; row < K; ++row ) // For each row
{
scale = matrix[row][col]; // This is the scale, since input[col][col] = 1.
// Once again, for each column, we add the corresponding scaled
// version of the pivoting element; however, in the input matrix,
// values at the left of this column are assumed to be already zero:
for( unsigned int cc = col; cc < K; ++cc ) // Only the columns from col
{
matrix[row][cc] -= scale * matrix[col][cc];
}
iterm[row] -= scale * iterm[col];
// We have completed this row
}
// We have completed this column
}
// Now we have an upper-triangular matrix, where all diagonal elements are
// just 1, except for the last one; Now, we may compute the output in a recursive
// fashion:
if( fabs(matrix[K - 1][K - 1]) <= 1e-10 )
{
for( unsigned int j = 0; j < K; ++j )
{
delete[] matrix[j];
}
delete[] matrix;
delete[] iterm;
return false;
}
whitened[K - 1] = iterm[K - 1] / matrix[K - 1][K - 1]; // The last one
for( int k = K - 2; k >= 0; --k ) // For each component
{
whitened[k] = iterm[k]; // Initiallise
for( unsigned int j = k + 1; j < K; ++j )
{
whitened[k] -= whitened[j] * matrix[k][j];
}
}
// Delete allocated memory:
for( unsigned int j = 0; j < K; ++j )
{
delete[] matrix[j];
}
delete[] matrix;
delete[] iterm;
// Matrix has been inverted!!
return true;
}
template< class TInputImage, class TOutputImage >
float LMMSEVectorImageFilter<TInputImage, TOutputImage >
::ComputeTraceMO0( const InputImageSizeType& rcomp )
{
unsigned int size = 1;
for( unsigned int k=0; k<TInputImage::ImageDimension; ++k )
size *= (2*rcomp[k]+1);
typedef itk::ConstNeighborhoodIterator<InputImageType> IteratorType;
IteratorType bit = IteratorType( rcomp, this->GetInput(), this->GetInput()->GetBufferedRegion() );
typename IteratorType::OffsetType idx;
bit.GoToBegin();
float norm = itk::NumericTraits<float>::Zero;
float trace = itk::NumericTraits<float>::Zero;
for( unsigned int k=0; k<size/2; ++k ){
idx = bit.GetOffset(k);
float aux = itk::NumericTraits<float>::Zero;
for( unsigned int j=0; j<TInputImage::ImageDimension; ++j )
aux += ((float)idx[j])*((float)idx[j]);
norm += ::exp(-aux/2);
trace += ::exp(-aux);
}
norm = 2.0f*norm + ::exp(-0.5f);
trace = 2.0f*trace + ::exp(-1.0f);
return(trace/norm/norm);
}
template< class TInputImage, class TOutputImage >
float LMMSEVectorImageFilter<TInputImage, TOutputImage >
::ComputeTraceMO1( const InputImageSizeType& rcomp )
{
unsigned int size = 1;
for( unsigned int k=0; k<TInputImage::ImageDimension; ++k )
size *= (2*rcomp[k]+1);
typedef itk::ConstNeighborhoodIterator<InputImageType> IteratorType;
IteratorType bit = IteratorType( rcomp, this->GetInput(), this->GetInput()->GetBufferedRegion() );
typename IteratorType::OffsetType idx;
bit.GoToBegin();
float norm = itk::NumericTraits<float>::Zero;
float trace = itk::NumericTraits<float>::Zero;
for( unsigned int k=0; k<size/2; ++k ){
idx = bit.GetOffset(k);
float aux = itk::NumericTraits<float>::Zero;
for( unsigned int j=0; j<TInputImage::ImageDimension; ++j )
aux += ((float)idx[j])*((float)idx[j]);
norm += ::exp(-aux/2);
trace += ::exp(-aux);
}
norm = 2.0f*norm + ::exp(-0.5f);
trace = 2.0f*trace + ::exp(-1.0f);
trace = trace/norm/norm;
if( TInputImage::ImageDimension==2 )