MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer, arxiv
PaddlePaddle training/validation code and pretrained models for MobileViT.
The official apple implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-16): Code is refactored.
- Update (2021-12-30): Add multi scale sampler DDP and update mobilevit_s model weights.
- Update (2021-11-02): Pretrained model weights (mobilevit_s) is released.
- Update (2021-11-02): Pretrained model weights (mobilevit_xs) is released.
- Update (2021-10-29): Pretrained model weights (mobilevit_xxs) is released.
- Update (2021-10-20): Initial code is released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
mobilevit_xxs | 70.31 | 89.68 | 1.32M | 0.44G | 256 | 1.0 | bicubic | google/baidu |
mobilevit_xs | 74.47 | 92.02 | 2.33M | 0.95G | 256 | 1.0 | bicubic | google/baidu |
mobilevit_s | 76.74 | 93.08 | 5.59M | 1.88G | 256 | 1.0 | bicubic | google/baidu |
mobilevit_s* | 77.83 | 93.83 | 5.59M | 1.88G | 256 | 1.0 | bicubic | google/baidu |
The results are evaluated on ImageNet2012 validation set.
All models are trained from scratch using PaddleViT.
* means model is trained from scratch using PaddleViT using multi scale sampler DDP.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./mobilevit_s.pdparams
, to use the mobilevit_s
model in python:
from config import get_config
from mobilevit import build_mobilevit as build_model
# config files in ./configs/
config = get_config('./configs/mobilevit_s.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./mobilevit_s.pdparams')
model.set_state_dict(model_state_dict)
To evaluate MobileViT model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/mobilevit_s.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./mobilevit_s.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the MobileViT model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/mobilevit_s.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the MobileViT model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/mobilevit_s.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./mobilevit_s.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@article{mehta2021mobilevit,
title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
author={Mehta, Sachin and Rastegari, Mohammad},
journal={arXiv preprint arXiv:2110.02178},
year={2021}
}