-
Notifications
You must be signed in to change notification settings - Fork 28
/
run_single_camera.py
144 lines (125 loc) · 6.45 KB
/
run_single_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import os, sys
import cv2
import torch
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from core.dataset import LoaderSingle
from core.utils.decoder_utils import load_decoder
from core.utils.render_utils import *
from core.visualize.vis_utils import *
from core.inv_optimizer import optimize_single_view
from core.evaluation import *
from core.visualize.visualizer import Visualizer
from core.sdfrenderer import SDFRenderer
import pickle
def init_info():
# TODO
# set this mesh_data_dir to the path to your NormalizationParameters and SurfaceSamples
mesh_data_dir = os.path.expanduser('data')
# mesh_data_dir = os.path.expanduser('~/data')
basedir = os.path.join(os.path.dirname(os.path.abspath(__file__)))
data_dir = os.path.join(basedir, 'data')
model_dir = os.path.join(basedir, 'deepsdf')
experiment_directory = os.path.join(model_dir, 'experiments/sofas')
split_file = os.path.join(model_dir, 'examples/splits/sv2_sofas_test.json')
synthetic_data_dir = os.path.join(data_dir, 'demo_singleview_syn')
return mesh_data_dir, experiment_directory, split_file, synthetic_data_dir
def train(args):
# initialize output_dir
if not os.path.exists(args.vis_folder):
os.makedirs(args.vis_folder)
#########################################################################
# load data
#########################################################################
mesh_data_dir, experiment_directory, split_file, synthetic_data_dir = init_info()
upper_loader = LoaderSingle(synthetic_data_dir, mesh_data_dir, experiment_directory, split_file)
shape_md5, image_data, mesh_data, camera, depth = upper_loader[6]
img, _, normal, _ = image_data
gt_samples, norm_params = mesh_data
points_gt = np.array(gt_samples.vertices)
points_gt = (points_gt + norm_params['offset']) * norm_params['scale']
gt_pack = {}
gt_pack['depth'] = torch.from_numpy(depth).cuda()
gt_pack['normal'] = torch.from_numpy(normal).cuda()
gt_pack['silhouette'] = torch.from_numpy(depth < 1e5).type(torch.uint8).cuda()
# # visualize gt
# cv2.imwrite('img.png', img)
# visualize_depth('test0.png', depth)
# with open('camera.pkl', 'wb') as f:
# pickle.dump(camera, f)
#########################################################################
# prepare tensor
#########################################################################
decoder = load_decoder(experiment_directory, args.checkpoint)
decoder = decoder.module.cuda()
evaluator = Evaluator(decoder)
latent_code_dir = os.path.join(synthetic_data_dir, 'latent_codes', '{0}.pth'.format(shape_md5))
latent_code = torch.load(latent_code_dir)
latent_tensor = latent_code[0].detach().cpu()
latent_size = latent_code.shape[-1]
latent_tensor = latent_tensor.float().cuda()
latent_tensor.requires_grad = False
K, RT = camera.intrinsic, camera.extrinsic
camera_tensor = get_tensor_from_camera(RT)
std_cam = 1e-1
if args.use_gt_camera:
camera_tensor = camera_tensor
else:
camera_tensor = camera_tensor + torch.ones(camera_tensor.shape[0]).normal_(mean=0, std=std_cam)
from torch.autograd import Variable
camera_tensor = Variable(camera_tensor.cuda(), requires_grad=True)
optimizer_camera = torch.optim.Adam([camera_tensor], lr=args.lr)
#########################################################################
# optimization
#########################################################################
weight_dict = {}
weight_dict['w_depth'] = 10.0
weight_dict['w_normal'] = 10.0
weight_dict['w_mask_gt'] = 1.0
weight_dict['w_mask_out'] = 1.0
weight_dict['w_l2reg'] = 1.0
img_h, img_w = img.shape[0], img.shape[1]
img_hw = (img_h, img_w)
print('Image size: {0}.'. format(img_hw))
if args.visualize:
visualizer = Visualizer(img_hw)
else:
visualizer = None
# initialize renderer
sdf_renderer = SDFRenderer(decoder, camera.intrinsic, img_hw=img_hw, march_step=100, buffer_size=3, threshold=args.threshold, ray_marching_ratio=args.ratio, use_depth2normal=args.use_depth2normal)
renderer_list = [sdf_renderer]
if args.oracle:
num_iters = 1
else:
num_iters = args.num_iters
# optimization start
camera_tensor, optimizer_latent = optimize_single_view(renderer_list, evaluator, optimizer_camera, latent_tensor, camera_tensor, gt_pack, weight_dict, optimizer_type="camera", num_iters=num_iters, points_gt=points_gt, test_step=args.test_step, profile=args.profile, visualizer=visualizer, ray_marching_type=args.method, vis_folder=args.vis_folder)
# Main
if __name__ == '__main__':
import argparse
arg_parser = argparse.ArgumentParser(
description="Use differentiable renderer to optimize camera extrinsics from 2D observations."
)
arg_parser.add_argument("--checkpoint", "-c", dest="checkpoint", default="2000",
help='The checkpoint weights to use. This can be a number indicated an epoch or "latest" '
+ "for the latest weights (this is the default)",
)
# optimization setting
arg_parser.add_argument('--gpu', '-g', default='0', help='gpu id.')
arg_parser.add_argument('--lr', type=float, default=5e-3, help='learning rate.')
arg_parser.add_argument('--test_step', '-t', type=int, default=2000, help='test step.')
arg_parser.add_argument('--num_iters', type=int, default=400, help='number of iterations.')
arg_parser.add_argument('--vis_folder', type=str, default='vis/demo_singleview_camera', help='folder for visualization')
arg_parser.add_argument('--profile', action='store_true', help='renderer profiling.')
arg_parser.add_argument('--use_gt_camera', action='store_true', help='gt camera flag.')
arg_parser.add_argument('--oracle', action='store_true', help='oracle rendering feedforward')
arg_parser.add_argument('--ratio', type=float, default=1.5, help='test step.')
arg_parser.add_argument('--method', type=str, default='pyramid_recursive', help='ray marching implementation.')
arg_parser.add_argument('--visualize', action='store_true', help='visualization flag.')
arg_parser.add_argument('--threshold', type=float, default=5e-5, help='threshold')
arg_parser.add_argument('--use_depth2normal', action='store_true', help='use normal converted from depth')
args = arg_parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
if args.oracle:
args.visualize = True
train(args)