Skip to content

models t5 small

github-actions[bot] edited this page Dec 2, 2023 · 24 revisions

t5-small

Overview

T5 Small is a text-to-text transformer model with 60 million parameters. It is developed by a group of researchers and is based on the Text-To-Text Transfer Transformer (T5) framework, which allows for a unified text-to-text format for input and output of all NLP tasks. T5-Small can be trained for multiple NLP tasks such as machine translation, document summarization, question answering, classification, and even regression tasks. It is pre-trained on the Colossal Clean Crawled Corpus (C4) and a multi-task mixture of unsupervised and supervised tasks in various languages, such as English, French, Romanian and German. You can use the code provided to get started with the model and refer to the resources provided for more information on the model.

The above summary was generated using ChatGPT. Review the original-model-card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time translation-online-endpoint.ipynb translation-online-endpoint.sh
Batch translation-batch-endpoint.ipynb coming soon

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Summarization News Summary CNN DailyMail news-summary.ipynb news-summary.sh
Translation Translate English to Romanian WMT16 translate-english-to-romanian.ipynb translate-english-to-romanian.sh

Model Evaluation

Task Use case Dataset Python sample (Notebook) CLI with YAML
Translation Translation wmt16/ro-en evaluate-model-translation.ipynb evaluate-model-translation.yml

Sample inputs and outputs (for real-time inference)

Sample input

{
    "input_data": {
        "input_string": ["My name is John and I live in Seattle", "Berlin is the capital of Germany."]
    },
    "parameters": {
        "task_type": "translation_en_to_fr"
    }
}

Sample output

[
    {
        "0": "Mon nom est John et je vivais à Seattle."
    },
    {
        "0": "Berlin est la capitale de l'Allemagne."
    }
]

Version: 10

Tags

Preview computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4'] license : apache-2.0 model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'}) task : text-translation

View in Studio: https://ml.azure.com/registries/azureml/models/t5-small/version/10

License: apache-2.0

Properties

SHA: df1b051c49625cf57a3d0d8d3863ed4d13564fe4

datasets: c4

evaluation-min-sku-spec: 8|0|28|56

evaluation-recommended-sku: Standard_DS4_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: summarization, translation

inference-min-sku-spec: 2|0|7|14

inference-recommended-sku: Standard_DS2_v2, Standard_D2a_v4, Standard_D2as_v4, Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_F4s_v2, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

languages: en, fr, ro, de

Clone this wiki locally