Skip to content

models qna f1 score eval

github-actions[bot] edited this page Nov 8, 2023 · 7 revisions

qna-f1-score-eval

Overview

The "QnA F1 Score Evaluation" is a model to evaluate the Q&A Retrieval Augmented Generation systems using f1 score based on the word counts in predicted answer and ground truth.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time deploy-promptflow-model-python-example deploy-promptflow-model-cli-example
Batch N/A N/A

Sample inputs and outputs (for real-time inference)

Sample input

{
    "inputs": {
        "ground_truth": "Master transformer.",
        "answer": "The main transformer is the object that feeds all the fixtures in low voltage tracks."
    }
}

Sample output

{
    "outputs": {
        "f1_score": "0.14285714285714285"
    }
}

Version: 3

View in Studio: https://ml.azure.com/registries/azureml/models/qna-f1-score-eval/version/3

Properties

is-promptflow: True

azureml.promptflow.section: gallery

azureml.promptflow.type: evaluate

azureml.promptflow.name: QnA F1 Score Evaluation

azureml.promptflow.description: Compute the F1 Score based on words in answer and ground truth.

inference-min-sku-spec: 2|0|14|28

inference-recommended-sku: Standard_DS3_v2

Clone this wiki locally