Skip to content

models microsoft deberta xlarge

github-actions[bot] edited this page Nov 30, 2023 · 23 revisions

microsoft-deberta-xlarge

Overview

DeBERTa is a model that improves on the BERT and RoBERTa models by using disentangled attention and an enhanced mask decoder. It performance better on several NLU tasks than RoBERTa with 80GB training data. The DeBERTa XLarge model has 48 layers and a hidden size of 1024 with 750 million parameters. It demonstrates good results when fine-tuned on several NLU tasks like SQuAD and GLUE benchmark. If you use DeBERTa in your work, the authors request that you cite their papers.
Please Note: This model accepts masks in [mask] format. See Sample input for reference. 

The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time fill-mask-online-endpoint.ipynb fill-mask-online-endpoint.sh
Batch fill-mask-batch-endpoint.ipynb coming soon

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Text Classification Emotion Detection Emotion emotion-detection.ipynb emotion-detection.sh
Token Classification Named Entity Recognition Conll2003 named-entity-recognition.ipynb named-entity-recognition.sh
Question Answering Extractive Q&A SQUAD (Wikipedia) extractive-qa.ipynb extractive-qa.sh

Model Evaluation

Task Use case Python sample (Notebook) CLI with YAML
Fill Mask Fill Mask rcds/wikipedia-for-mask-filling evaluate-model-fill-mask.ipynb

Sample inputs and outputs (for real-time inference)

Sample input

{
    "inputs": {
        "input_string": ["Paris is the [MASK] of France.", "Today is a [MASK] day!"]
    }
}

Sample output

[
  {
    "0": "ews"
  },
  {
    "0": "rew"
  }
]

Version: 13

Tags

Preview computes_allow_list : ['Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4'] license : mit model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'}) task : fill-mask

View in Studio: https://ml.azure.com/registries/azureml/models/microsoft-deberta-xlarge/version/13

License: mit

Properties

SHA: 971e67361eb2580900e26b7062470dee4773d324

datasets:

evaluation-min-sku-spec: 8|0|28|56

evaluation-recommended-sku: Standard_DS4_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: text-classification, token-classification, question-answering

inference-min-sku-spec: 8|0|28|56

inference-recommended-sku: Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

languages: en

Clone this wiki locally