Skip to content

models microsoft deberta large

github-actions[bot] edited this page Sep 19, 2023 · 24 revisions

microsoft-deberta-large

Overview

Description: Decoding-enhanced BERT with Disentangled Attention is that it is an improvement of the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With 80GB training data, it outperforms the BERT and RoBERTa models in many Natural Language Understanding (NLU) tasks. Key results can be found on the SQuAD 1.1/2.0 and GLUE benchmark tasks when fine-tuned with the MNLI task. The details are available in the official repository and a related paper. If it's useful, cite the paper as described in the citation.
Please Note: This model accepts masks in [mask] format. See Sample input for reference. > The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model. ### Inference samples Inference type|Python sample (Notebook)|CLI with YAML |--|--|--| Real time|fill-mask-online-endpoint.ipynb|fill-mask-online-endpoint.sh Batch |fill-mask-batch-endpoint.ipynb| coming soon ### Finetuning samples Task|Use case|Dataset|Python sample (Notebook)|CLI with YAML |--|--|--|--|--| Text Classification|Emotion Detection|Emotion|emotion-detection.ipynb|emotion-detection.sh Token Classification|Named Entity Recognition|Conll2003|named-entity-recognition.ipynb|named-entity-recognition.sh Question Answering|Extractive Q&A|SQUAD (Wikipedia)|extractive-qa.ipynb|coming soon ### Model Evaluation Task| Use case| Python sample (Notebook)| CLI with YAML |--|--|--|--| Fill Mask | Fill Mask | rcds/wikipedia-for-mask-filling | evaluate-model-fill-mask.ipynb | evaluate-model-fill-mask.yml ### Sample inputs and outputs (for real-time inference) #### Sample input json { "inputs": { "input_string": ["Paris is the [MASK] of France.", "Today is a [MASK] day!"] } } #### Sample output json [ { "0": "capital" }, { "0": "beautiful" } ]

Version: 10

Tags

Preview computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4'] license : mit model_specific_defaults : ordereddict([('apply_deepspeed', 'true'), ('apply_lora', 'true'), ('apply_ort', 'true')]) task : fill-mask

View in Studio: https://ml.azure.com/registries/azureml/models/microsoft-deberta-large/version/10

License: mit

Properties

SHA: a97e054da5f34feed3d26951db4a25831dfcb486

datasets:

evaluation-min-sku-spec: 8|0|28|56

evaluation-recommended-sku: Standard_DS4_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: text-classification, token-classification, question-answering

inference-min-sku-spec: 2|0|14|28

inference-recommended-sku: Standard_DS3_v2

languages: en

Clone this wiki locally