Skip to content

models facebook deit base patch16 224

github-actions[bot] edited this page Oct 27, 2023 · 27 revisions

facebook-deit-base-patch16-224

Overview

This model is a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model that is pre-trained and fine-tuned on a large collection of images in a supervised fashion. It is presented with images as sequences of fixed-size patches, which are linearly embedded, and before feeding the sequence to the layers of the Transformer encoder, absolute position embeddings are added. By pre-training the model, it is able to generate an inner representation of images that can be used to extract useful features for downstream tasks. For example, if one has a dataset of labeled images, a standard classifier can be trained by placing a linear layer on top of the pre-trained encoder. The last hidden state of the [CLS] token can be used as a representation of the entire image.

The above summary was generated using ChatGPT. Review the original-model-card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time image-classification-online-endpoint.ipynb image-classification-online-endpoint.sh
Batch image-classification-batch-endpoint.ipynb image-classification-batch-endpoint.sh

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Image Multi-class classification Image Multi-class classification fridgeObjects fridgeobjects-multiclass-classification.ipynb fridgeobjects-multiclass-classification.sh
Image Multi-label classification Image Multi-label classification multilabel fridgeObjects fridgeobjects-multilabel-classification.ipynb fridgeobjects-multilabel-classification.sh

Model Evaluation

Task Use case Dataset Python sample (Notebook)
Image Multi-class classification Image Multi-class classification fridgeObjects image-multiclass-classification.ipynb
Image Multi-label classification Image Multi-label classification multilabel fridgeObjects image-multilabel-classification.ipynb

Sample inputs and outputs (for real-time inference)

Sample input

{
  "input_data": {
    "columns": [
      "image"
    ],
    "index": [0, 1],
    "data": ["image1", "image2"]
  }
}

Note: "image1" and "image2" string should be in base64 format or publicly accessible urls.

Sample output

[
    {
        "probs": [0.91, 0.09],
        "labels": ["can", "carton"]
    },
    {
        "probs": [0.1, 0.9],
        "labels": ["can", "carton"]
    }
]

Model inference - visualization for a sample image

mc visualization

Version: 9

Tags

Preview license : apache-2.0 model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_ort': 'true'}) task : image-classification

View in Studio: https://ml.azure.com/registries/azureml/models/facebook-deit-base-patch16-224/version/9

License: apache-2.0

Properties

SHA: fb2c78a54a5637dec350432794f7b93e31f910c9

datasets: imagenet-1k

evaluation-min-sku-spec: 4|1|28|176

evaluation-recommended-sku: Standard_NC6s_v3

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC6s_v3

finetuning-tasks: image-classification

inference-min-sku-spec: 2|0|14|28

inference-recommended-sku: Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

model_id: facebook/deit-base-patch16-224

Clone this wiki locally