Skip to content

models facebook deit base patch16 224

github-actions[bot] edited this page Sep 29, 2023 · 27 revisions

facebook-deit-base-patch16-224

Overview

Description: This model is a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model that is pre-trained and fine-tuned on a large collection of images in a supervised fashion. It is presented with images as sequences of fixed-size patches, which are linearly embedded, and before feeding the sequence to the layers of the Transformer encoder, absolute position embeddings are added. By pre-training the model, it is able to generate an inner representation of images that can be used to extract useful features for downstream tasks. For example, if one has a dataset of labeled images, a standard classifier can be trained by placing a linear layer on top of the pre-trained encoder. The last hidden state of the [CLS] token can be used as a representation of the entire image. > The above summary was generated using ChatGPT. Review the original-model-card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model. ### Inference samples Inference type|Python sample (Notebook)|CLI with YAML |--|--|--| Real time|image-classification-online-endpoint.ipynb|image-classification-online-endpoint.sh Batch |image-classification-batch-endpoint.ipynb|image-classification-batch-endpoint.sh ### Finetuning samples Task|Use case|Dataset|Python sample (Notebook)|CLI with YAML |---|--|--|--|--| Image Multi-class classification|Image Multi-class classification|fridgeObjects|fridgeobjects-multiclass-classification.ipynb|fridgeobjects-multiclass-classification.sh Image Multi-label classification|Image Multi-label classification|multilabel fridgeObjects|fridgeobjects-multilabel-classification.ipynb|fridgeobjects-multilabel-classification.sh ### Model Evaluation |Task|Use case|Dataset|Python sample (Notebook)| |---|--|--|--| |Image Multi-class classification|Image Multi-class classification|fridgeObjects|image-multiclass-classification.ipynb| |Image Multi-label classification|Image Multi-label classification|multilabel fridgeObjects|image-multilabel-classification.ipynb| ### Sample inputs and outputs (for real-time inference) #### Sample input json { "input_data": { "columns": [ "image" ], "index": [0, 1], "data": ["image1", "image2"] } } Note: "image1" and "image2" string should be in base64 format or publicly accessible urls. #### Sample output json [ { "probs": [0.91, 0.09], "labels": ["can", "carton"] }, { "probs": [0.1, 0.9], "labels": ["can", "carton"] } ] #### Model inference - visualization for a sample image mc visualization

Version: 8

Tags

Preview license : apache-2.0 model_specific_defaults : ordereddict([('apply_deepspeed', 'true'), ('apply_ort', 'true')]) task : image-classification

View in Studio: https://ml.azure.com/registries/azureml/models/facebook-deit-base-patch16-224/version/8

License: apache-2.0

Properties

SHA: fb2c78a54a5637dec350432794f7b93e31f910c9

datasets: imagenet-1k

evaluation-min-sku-spec: 4|1|28|176

evaluation-recommended-sku: Standard_NC6s_v3

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC6s_v3

finetuning-tasks: image-classification

inference-min-sku-spec: 2|0|14|28

inference-recommended-sku: Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

model_id: facebook/deit-base-patch16-224

Clone this wiki locally