Skip to content

models distilbert base uncased

github-actions[bot] edited this page Jun 16, 2023 · 19 revisions

distilbert-base-uncased

Overview

Description: The DistilBERT base model (uncased) is a distilled version of the BERT base model that is smaller and faster than BERT. It was introduced in a specific paper and the code for creating the model can be found on a specific webpage. The model is uncased so it doesn't differentiate between lower and upper case letters in the English language. DistilBERT is considered a transformers model that was pretrained on the same corpus in a self-supervised fashion using the BERT base model as a teacher. The model was pretrained using the distillation loss, masked language modeling, and cosine embedding loss objectives. The intended use of the model is to be fine-tuned on downstream tasks like sequence classification, token classification, and question answering, but not text generation.
Please Note: This model accepts masks in [mask] format. See Sample input for reference. > The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model. ### Inference samples Inference type|Python sample (Notebook)|CLI with YAML |--|--|--| Real time|fill-mask-online-endpoint.ipynb|fill-mask-online-endpoint.sh Batch |fill-mask-batch-endpoint.ipynb| coming soon ### Finetuning samples Task|Use case|Dataset|Python sample (Notebook)|CLI with YAML |--|--|--|--|--| Text Classification|Emotion Detection|Emotion|emotion-detection.ipynb|emotion-detection.sh Token Classification|Named Entity Recognition|Conll2003|named-entity-recognition.ipynb|named-entity-recognition.sh Question Answering|Extractive Q&A|SQUAD (Wikipedia)|extractive-qa.ipynb|extractive-qa.sh ### Model Evaluation Task| Use case| Python sample (Notebook)| CLI with YAML |--|--|--|--| Fill Mask | Fill Mask | rcds/wikipedia-for-mask-filling | evaluate-model-fill-mask.ipynb | evaluate-model-fill-mask.yml ### Sample inputs and outputs (for real-time inference) #### Sample input json { "inputs": { "input_string": ["Paris is the [MASK] of France.", "Today is a [MASK] day!"] } } #### Sample output json [ { "0": "capital" }, { "0": "beautiful" } ]

Version: 6

Tags

Preview license : apache-2.0 task : fill-mask

View in Studio: https://ml.azure.com/registries/azureml/models/distilbert-base-uncased/version/6

License: apache-2.0

Properties

SHA: 1c4513b2eedbda136f57676a34eea67aba266e5c

datasets: bookcorpus, wikipedia

evaluation-min-sku-spec: 2|0|7|14

evaluation-recommended-sku: Standard_DS2_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: text-classification, token-classification, question-answering

inference-min-sku-spec: 2|0|7|14

inference-recommended-sku: Standard_DS2_v2

languages: en

Clone this wiki locally