-
Notifications
You must be signed in to change notification settings - Fork 130
models camembert base
CamemBERT is a state-of-the-art language model for French developed by a team of researchers. It is based on the RoBERTa model and is available in 6 different versions on Hugging Face. It can be used for fill-in-the-blank tasks. However, it has been pretrained on a subcorpus of OSCAR which may contain lower quality data and personal and sensitive information. Also, there may be biases and historical stereotypes present in the model. The model is licensed under the MIT license, and more information can be found in the research paper and on the Camembert website. It was trained on the OSCAR dataset, which is a multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the Ungoliant architecture.
Please Note: This model accepts masks in <mask>
format. See Sample input for reference.
The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.
Inference type | Python sample (Notebook) | CLI with YAML |
---|---|---|
Real time | fill-mask-online-endpoint.ipynb | fill-mask-online-endpoint.sh |
Batch | fill-mask-batch-endpoint.ipynb | coming soon |
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Text Classification | Emotion Detection | Emotion | emotion-detection.ipynb | emotion-detection.sh |
Token Classification | Named Entity Recognition | Conll2003 | named-entity-recognition.ipynb | named-entity-recognition.sh |
Question Answering | Extractive Q&A | SQUAD (Wikipedia) | extractive-qa.ipynb | extractive-qa.sh |
Task | Use case | Python sample (Notebook) | CLI with YAML |
---|---|---|---|
Fill Mask | Fill Mask | rcds/wikipedia-for-mask-filling | evaluate-model-fill-mask.ipynb |
{
"inputs": {
"input_string": ["Paris is the <mask> of France.", "Today is a <mask> day!"]
}
}
[
{
"0": "capital"
},
{
"0": "beautiful"
}
]
Version: 10
Preview
computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4']
license : mit
model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'})
task : fill-mask
View in Studio: https://ml.azure.com/registries/azureml/models/camembert-base/version/10
License: mit
SHA: 3f452b6e5a89b0e6c828c9bba2642bc577086eae
datasets: oscar
evaluation-min-sku-spec: 8|0|28|56
evaluation-recommended-sku: Standard_DS4_v2
finetune-min-sku-spec: 4|1|28|176
finetune-recommended-sku: Standard_NC24rs_v3
finetuning-tasks: text-classification, token-classification, question-answering
inference-min-sku-spec: 2|0|7|14
inference-recommended-sku: Standard_DS2_v2, Standard_D2a_v4, Standard_D2as_v4, Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_F4s_v2, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2
languages: fr