Skip to content

components oss_text_generation_finetune

github-actions[bot] edited this page Nov 23, 2023 · 25 revisions

OSS Text Generation Finetune

oss_text_generation_finetune

Overview

FTaaS component to finetune model for Text Generation task

Version: 0.0.3

View in Studio: https://ml.azure.com/registries/azureml/components/oss_text_generation_finetune/version/0.0.3

Inputs

Name Description Type Default Optional Enum
mlflow_model_path Input folder path containing mlflow model for further finetuning. Proper model/huggingface id must be passed. mlflow_model True
dataset_input Output of data import component. The folder contains train and validation data. uri_folder False
text_key key for text in an example. format your data keeping in mind that text is concatenated with ground_truth while finetuning in the form - text + groundtruth. for eg. "text"="knock knock\n", "ground_truth"="who's there"; will be treated as "knock knock\nwho's there" string False
ground_truth_key key for ground_truth in an example. we take separate column for ground_truth to enable use cases like summarization, translation, question_answering, etc. which can be repurposed in form of text-generation where both text and ground_truth are needed. This separation is useful for calculating metrics. for eg. "text"="Summarize this dialog:\n{input_dialogue}\nSummary:\n", "ground_truth"="{summary of the dialogue}" string True
batch_size Number of examples to batch before calling the tokenization function integer 1000 True
pad_to_max_length If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max_seq_length. If no max_seq_length is specified, the padding is done up to the model's max length. string false True ['true', 'false']
max_seq_length Default is -1 which means the padding is done up to the model's max length. Else will be padded to max_seq_length. integer -1 True
number_of_gpu_to_use_finetuning number of gpus to be used per node for finetuning, should be equal to number of gpu per node in the compute SKU used for finetune integer 1 False
apply_lora lora enabled string false True ['true', 'false']
merge_lora_weights if set to true, the lora trained weights will be merged to base model before saving string true True ['true', 'false']
lora_alpha lora attention alpha integer 128 True
lora_r lora dimension integer 8 True
lora_dropout lora dropout value number 0.0 True
num_train_epochs training epochs integer 1 True
max_steps If set to a positive number, the total number of training steps to perform. Overrides 'epochs'. In case of using a finite iterable dataset the training may stop before reaching the set number of steps when all data is exhausted. integer -1 True
per_device_train_batch_size Train batch size integer 1 True
per_device_eval_batch_size Validation batch size integer 1 True
auto_find_batch_size Flag to enable auto finding of batch size. If the provided 'per_device_train_batch_size' goes into Out Of Memory (OOM) enabling auto_find_batch_size will find the correct batch size by iteratively reducing 'per_device_train_batch_size' by a factor of 2 till the OOM is fixed string false True ['true', 'false']
optim Optimizer to be used while training string adamw_hf True ['adamw_hf', 'adamw_torch', 'adafactor']
learning_rate Start learning rate. Defaults to linear scheduler. number 2e-05 True
warmup_steps Number of steps used for a linear warmup from 0 to learning_rate integer 0 True
weight_decay The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in AdamW optimizer number 0.0 True
adam_beta1 The beta1 hyperparameter for the AdamW optimizer number 0.9 True
adam_beta2 The beta2 hyperparameter for the AdamW optimizer number 0.999 True
adam_epsilon The epsilon hyperparameter for the AdamW optimizer number 1e-08 True
gradient_accumulation_steps Number of updates steps to accumulate the gradients for, before performing a backward/update pass integer 1 True
eval_accumulation_steps Number of predictions steps to accumulate before moving the tensors to the CPU, will be passed as None if set to -1 integer -1 True
lr_scheduler_type learning rate scheduler to use. string linear True ['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup']
precision Apply mixed precision training. This can reduce memory footprint by performing operations in half-precision. string 32 True ['32', '16']
seed Random seed that will be set at the beginning of training integer 42 True
enable_full_determinism Ensure reproducible behavior during distributed training string false True ['true', 'false']
dataloader_num_workers Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. integer 0 True
ignore_mismatched_sizes Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model string true True ['true', 'false']
max_grad_norm Maximum gradient norm (for gradient clipping) number 1.0 True
evaluation_strategy The evaluation strategy to adopt during training string epoch True ['epoch', 'steps']
evaluation_steps_interval The evaluation steps in fraction of an epoch steps to adopt during training. Overwrites evaluation_steps if not 0. number 0.0 True
eval_steps Number of update steps between two evals if evaluation_strategy='steps' integer 500 True
logging_strategy The logging strategy to adopt during training. string epoch True ['epoch', 'steps']
logging_steps Number of update steps between two logs if logging_strategy='steps' integer 500 True
metric_for_best_model Specify the metric to use to compare two different models string loss True ['loss']
resume_from_checkpoint Loads Optimizer, Scheduler and Trainer state for finetuning if true string false True ['true', 'false']
save_total_limit If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in output_dir. If the value is -1 saves all checkpoints" integer 1 True
apply_early_stopping Enable early stopping string false True ['true', 'false']
early_stopping_patience Stop training when the specified metric worsens for early_stopping_patience evaluation calls integer 1 True
early_stopping_threshold Denotes how much the specified metric must improve to satisfy early stopping conditions number 0.0 True
apply_deepspeed If set to true, will enable deepspeed for training string false True ['true', 'false']
deepspeed_stage This parameter configures which DEFAULT deepspeed config to be used - stage2 or stage3. The default choice is stage2. Note that, this parameter is ONLY applicable when user doesn't pass any config information via deepspeed port. string 2 True ['2', '3']
apply_ort If set to true, will use the ONNXRunTime training string false True ['true', 'false']
system_properties Validation parameters propagated from pipeline. string True
registered_model_name Name of the registered model string True

Outputs

Name Description Type
output_model Output dir to save the finetuned lora weights uri_folder

Environment

azureml://registries/azureml/environments/acft-hf-nlp-gpu/versions/30

Clone this wiki locally