Skip to content

components automl_many_models_inference

github-actions[bot] edited this page Jul 12, 2023 · 11 revisions

AutoML Many Models - Inference

automl_many_models_inference

Overview

Description: Inference components for AutoML many model.

Version: 0.0.1

Tags

Preview

View in Studio: https://ml.azure.com/registries/azureml/components/automl_many_models_inference/version/0.0.1

Inputs

Name Description Type Default Optional Enum
raw_data Folder URI with inference data. uri_folder
compute_name Compute name for inference pipeline. string
max_nodes Number of nodes in a compute cluster we will run the inference step on. integer
max_concurrency_per_node Number of processes that will be run concurrently on any given node. This number should not be larger than 1/2 of the number of cores in an individual node in the specified cluster integer
parallel_step_timeout_in_seconds The PRS step time out setting in seconds. integer 3600
train_run_id The train run id used for training models that will be used to generate forecasts. string True
training_experiment_name The training experiment that used for inference. string True
partition_column_names The partition column names for inference. string True
forecast_quantiles Space separated list of quantiles for forecasting jobs. It is applicable only when the forecast_mode is recursive. string True
inference_type The inference type of the inference, possible values are forecast, predict and predict_proba. predict_proba`` should be used on the classification tasks, predictshould be used on the regression tasks andforecast` should be used on the forecasting tasks. string True ['forecast', 'predict', 'predict_proba']
forecast_mode The forecast mode used for inference. The possible values are recursive and rolling. string True ['recursive', 'rolling']
forecast_step The forecast step used for rolling forecast. See more details here: https://learn.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-forecast?view=azureml-api-2#evaluating-model-accuracy-with-a-rolling-forecast integer 1 True
allow_multi_partitions Allow multi paritions in one partitioned file boolean True
skip_concat_results Flag on skip concat inferece results boolean True
early_validation_failure Enable early failure validations boolean True
optional_train_metadata Metadata from training run. uri_folder True
label_column_name Label column name for the data. string True

Outputs

Name Description Type
run_output Folder URI representing the location of the output data uri_folder
raw_predictions The raw forecast results from each inferece run uri_folder
evaluation_configs The evaluation configs. uri_file
evaluation_data The evaluation data. uri_file
Clone this wiki locally