-
Notifications
You must be signed in to change notification settings - Fork 128
components automl_many_models_inference
github-actions[bot] edited this page Oct 21, 2023
·
11 revisions
Inference components for AutoML many model.
Version: 0.0.2
View in Studio: https://ml.azure.com/registries/azureml/components/automl_many_models_inference/version/0.0.2
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
raw_data | Folder URI with inference data. | uri_folder | |||
compute_name | Compute name for inference pipeline. | string | |||
max_nodes | Number of nodes in a compute cluster we will run the inference step on. | integer | |||
max_concurrency_per_node | Number of processes that will be run concurrently on any given node. This number should not be larger than 1/2 of the number of cores in an individual node in the specified cluster | integer | |||
parallel_step_timeout_in_seconds | The PRS step time out setting in seconds. | integer | 3600 | ||
train_run_id | The train run id used for training models that will be used to generate forecasts. | string | True | ||
training_experiment_name | The training experiment that used for inference. | string | True | ||
partition_column_names | The partition column names for inference. | string | True | ||
forecast_quantiles | Space separated list of quantiles for forecasting jobs. It is applicable only when the forecast_mode is recursive. | string | True | ||
inference_type | The inference type of the inference, possible values are forecast , predict and predict_proba . predict_proba`` should be used on the classification tasks, predictshould be used on the regression tasks and forecast` should be used on the forecasting tasks. |
string | True | ['forecast', 'predict', 'predict_proba'] | |
forecast_mode | The forecast mode used for inference. The possible values are recursive and rolling . |
string | True | ['recursive', 'rolling'] | |
forecast_step | The forecast step used for rolling forecast. See more details here: https://learn.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-forecast?view=azureml-api-2#evaluating-model-accuracy-with-a-rolling-forecast | integer | 1 | True | |
allow_multi_partitions | Allow multi paritions in one partitioned file | boolean | True | ||
skip_concat_results | Flag on skip concat inferece results | boolean | True | ||
early_validation_failure | Enable early failure validations | boolean | True | ||
optional_train_metadata | Metadata from training run. | uri_folder | True | ||
label_column_name | Label column name for the data. | string | True |
Name | Description | Type |
---|---|---|
run_output | Folder URI representing the location of the output data | uri_folder |
raw_predictions | The raw forecast results from each inferece run | uri_folder |
evaluation_configs | The evaluation configs. | uri_file |
evaluation_data | The evaluation data. | uri_file |