-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantitative_finance.py
95 lines (71 loc) · 2.93 KB
/
Quantitative_finance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Fitting various models on the data and a comparative analysis of performance
import pandas as pd
import numpy as np
import scipy
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
# Load the data from csv file
AAPL = pd.read_csv("AAPL.csv")
# Adjust predictors via train_names
# train_names = ["Open", "High", "Low", "Close", "Adj Close", "Volume"]
train_names = ['MACD 12 26 9', 'MACD 12 26 9 Signal', 'MACD 12 26 9 Hist', '5d Avg Vol vs 30d Avg Vol', '10d Avg Vol vs 90d Avg Vol', '14d RSI', '%K Full', '%D Full']
# Split the dataset into train set and test set
X_train, X_test, y_train, y_test = train_test_split(AAPL[train_names], AAPL['10d Label'], test_size=0.25, random_state=33)
# Standardized data by normalization
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
def logisticRegression():
# Initialize LogisticRegression Model
lr = LogisticRegression()
# Fit data and train
lr.fit(X_train, y_train)
# Predict test set
lr_y_predict = lr.predict(X_test)
# Analyze the results
print("Accuracy of Logistic Regression Classifier:", lr.score(X_test, y_test))
print(classification_report(y_test, lr_y_predict))
def sgdClassifier():
# Initialize SGDClassifier Model
sgdc = SGDClassifier()
sgdc.fit(X_train, y_train)
sgdc_y_predict = sgdc.predict(X_test)
# Analyze the results
print("Accuracy of SGD Classifier:", sgdc.score(X_test, y_test))
print(classification_report(y_test, sgdc_y_predict))
def linearSVC():
lsvc = LinearSVC()
lsvc.fit(X_train, y_train)
y_predict = lsvc.predict(X_test)
print("Accuracy of Linear SVC:", lsvc.score(X_test, y_test))
print(classification_report(y_test, y_predict))
def NBClassifier():
mnb = MultinomialNB()
mnb.fit(X_train, y_train)
y_predict = mnb.predict(X_test)
print("Accuracy of NB Classifier:", mnb.score(X_test, y_test))
print(classification_report(y_test, y_predict))
def kNNClassifier():
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
print("Accuracy of kNN Classifier:", knc.score(X_test, y_test))
print(classification_report(y_test, y_predict))
from sklearn import svm
from sklearn import cross_validation
if __name__ == '__main__':
logisticRegression()
sgdClassifier()
linearSVC()
NBClassifier()
kNNClassifier()
# clf = svm.SVC(kernel='linear', C=1)
# scores = cross_validation.cross_val_score(clf, X_train, y_train, cv = 10)
# print(type(scores))
# print(scores)